Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 23938   Accepted: 8678

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题意:N种货币,M种兑换关系,拥有S种货币的数量是V,然后M行分别是兑换关系,A,B两个可以互换的货币的种类,AB的汇率,AB的税,BA的汇率,BA的税,问是否通过某种兑换,让S增值

分析:从s出发,看看是否有一条回路,有的话就能通过这条回来不断增值,s就能保证增值
 #include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
#include <algorithm>
using namespace std;
const int INF = << ;
const int MAX = +;
const double delta = 1e-;
double dist[MAX];
int n,m,s;
double v;
struct point
{
int a,b;
double rat,cost;
};
vector<point> edge;
int zero(double x)
{
if(x < -delta)
return -;
return x > delta;
}
bool Bellman_Ford(int s)
{
for(int i = ; i <= n; i++)
{
dist[i] = ;
}
dist[s] = v;
int len = edge.size();
for(int i = ; i < n; i++)
{
int flag = ;
for(int j = ; j < len; j++)
{
int a = edge[j].a;
int b = edge[j].b;
double rat = edge[j].rat;
double cost = edge[j].cost;
double temp = (dist[a] - cost) * rat;
if(zero(temp - dist[b]) > ) //是大于0,一直当非0来算的
{
dist[b] = temp;
flag = ;
}
}
if(flag == )
break;
}
for(int j = ; j < len; j++)
{
int a = edge[j].a;
int b = edge[j].b;
double rat = edge[j].rat;
double cost = edge[j].cost;
double temp = (dist[a] - cost) * rat;
if(zero(temp - dist[b]) > )
{
return true;
}
}
return false;
}
int main()
{
while(scanf("%d%d%d%lf", &n,&m,&s,&v) != EOF)
{
int A,B;
double Rab,Cab,Rba,Cba;
for(int i = ; i < m; i++)
{
point temp;
scanf("%d%d%lf%lf%lf%lf",&A,&B,&Rab,&Cab,&Rba,&Cba);
temp.a = A;
temp.b = B;
temp.rat = Rab;
temp.cost = Cab;
edge.push_back(temp);
temp.a = B;
temp.b = A;
temp.cost = Cba;
temp.rat = Rba;
edge.push_back(temp);
}
if(Bellman_Ford(s))
printf("YES\n");
else
printf("NO\n");
}
return ;
}

POJ1860Currency Exchange(Bellman + 正权回路)的更多相关文章

  1. POJ1860-Currency Exchange (正权回路)【Bellman-Ford】

    <题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...

  2. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  3. Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  4. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  5. POJ 1860 Currency Exchange(最短路&spfa正权回路)题解

    题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...

  6. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

  7. Bellman_ford货币兑换——正权回路判断

    POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...

  8. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  9. POJ 3259 Wormholes(最短路&spfa正权回路)题解

    题意:给你m条路花费时间(双向正权路径),w个虫洞返回时间(单向负权路径),问你他能不能走一圈回到原点之后,时间倒流. 思路:题意有点难看懂,我们建完边之后找一下是否存在负权回路,存在则能,反之不能. ...

随机推荐

  1. GridControl控件绑定RepositoryItemImageComboBox 作为下拉框使用

    如果,时间长时了,已前做过的东西,都记不得了,所以记录一下. 废话不多说. 1.拖出gridview控件,然后将字段绑定上去 2.将要做下拉框的控件加入RepositoryItemImageCombo ...

  2. (转载)关于Apache 的两种工作模式

    今天在查看服务器的时候,发现服务器http请求数 每天增长越来越多,在优化集群服务器的时候,查看到Apache 的工作模式是prefork,于是想到了worker 模式, 想暂时的把当前运行模式改成w ...

  3. WorldWind源码剖析系列:BMNG类构造函数深入分析

    BMNG构造函数深入分析 一.主要类图 二.主要功能: 1)        BMNG类 BMNG类将包含以“Blue Marble”为主题的所有可渲染影像的根节点添加到当前星球的可渲染对象列表中,包括 ...

  4. 处理程序“ExtensionlessUrlHandler-Integrated-4.0”在其模块列表

    IIS上部署MVC网站,打开后ExtensionlessUrlHandler-Integrated-4.0解决办法 IIS上部署MVC网站,打开后ExtensionlessUrlHandler-Int ...

  5. JAVABEAN连接各数据库

    1.  连接ACCESS( AccessBean.java) package access; import java.sql.*; public class AccessBean { String d ...

  6. Linux及安全期中总结

    Chapter1 往期博客传送门 Linux内核分析——第一周学习笔记 Linux内核分析——第二周学习笔记 Linux内核分析——第三周学习笔记 <Linux内核设计与实现>学习记录一 ...

  7. StretchDIBits函数

    该函数将DIB中矩形区域内像素使用的颜色数据拷贝到指定的目标矩形中.如果目标矩形比源矩形大小要大,那么函数对颜色数据的行和列进行拉伸,以与目标矩形匹配.如果目标矩形大小要比源矩形小,那么该函数通过使用 ...

  8. 关于JavaScript打印去掉页眉页脚

    因为这个问题,Google和百度都查了个遍,网上主要解决方案都是这一个代码: <script language="JavaScript"> var hkey_root, ...

  9. 慢牛系列四:好玩的React Native

    在上次随笔(系列三)中,我试着用RN实现了一个Demo,感觉很不错,当时遇到的问题这篇文章里基本都解决了,比如导航动画问题,这篇文章里主要介绍RN的动画,学会动画以后,各种小创意都可以实现了^^ 下面 ...

  10. jsp中常用操作字符串的el表达式

    由于在JSP页面中显示数据时,经常需要对显示的字符串进行处理,SUN公司针对于一些常见处理定义了一套EL函数库供开发者使用. 准备工作:1)导入jar包:standard.jar和jstl.jar2) ...