Description

有一个N个整数的序列(每个数的初值为0)。每个数都是整数。你有M次操作。操作有两种类型:

——Add  Di  Xi 从第一个数开始每隔Di 个位置增加Xi

——Query Li  Ri 回答当前序列Li项到Ri项的和

Input

两个数N和M,输入到文件结尾。以下M行每行的输入两种操作形式的一种。(1 <= N, M, Di, Xi, Li, Ri <= 100000, Li <= Ri )

Output

对于每组数据,输出每组的询问的结果。

Sample Input

4 4
Query 2 3
Add 1 1
Query 2 3
Query 1 4

Sample Output

0
2
4

HINT

Source


这道题出自2013年国家队候选队员罗剑桥的论文《浅谈分块思想在一类数据处理问题中的应用》,是罗原创的一道题。

这道题的解法是分块:

将整个区间从左往右每$\lceil\sqrt{n}\rceil$个分成一块。

更新:

将$ADD\quad D \ X$操作分成两类

  1.   $D \ge \lceil\sqrt{n} \rceil$ 的$ADD$操作,直接更新序列相应位置上元素,并更新各元素所属块由这类$ADD$操作所贡献的和,复杂度是$O(\sqrt{n})$。
  2. $D < \lceil \sqrt{n} \rceil$ 的$ADD$操作,我们将它记录在数组$sum[1\dots\lceil \sqrt{n} \rceil -1]$上:即对于$ADD \quad D \ X$,将$X$累加在$sum[D]$上,复杂度是$O(1)$。

查询:

对于查询区间$[L, R]$,分别查询上述两类$ADD$操作对$[L, R]$的贡献,相加即是答案。


Implementation:

这题我调了很长时间,先贴上第一版(有bug)代码

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int N(1e5+);
int n, m, b;
LL bucket[N], sum[N], a[N];
char op[]; inline int ID(int x, int b){ //x>=0
return x? (x-)/b+: ;
} int main(){
for(int T=; ~scanf("%d%d", &n, &m); T++){
if(T==) for(;;);
memset(a, , sizeof(a));
memset(bucket, , sizeof(bucket));
memset(sum, , sizeof(sum));
b=sqrt(n);
for(int d, x, l, r; m--; ){
scanf("%s", op);
if(*op=='A'){
scanf("%d%d", &d, &x);
if(d>=b){
for(int i=; i<=n; i+=d)
a[i]+=x, bucket[ID(i, b)]+=x;
}
else sum[d]+=x;
}
else{
scanf("%d%d", &l, &r);
LL res=;
int L=ID(l-, b)+, R=ID(r+, b)-; //error-prone
////////////////////////////////////////
for(int i=l; i<=b*(L-); i++) res+=a[i];
for(int i=b*R+; i<=r; i++) res+=a[i];
////////////////////////////////////////
for(int i=L; i<=R; i++) res+=bucket[i];
for(int i=; i<b; i++){
res+=(ID(r, i)-ID(l-, i))*sum[i];
}
printf("%lld\n", res);
}
}
}
return ;
}

bug就在分离出来的那两行,坑暂时留着,以后填。

bug-free version

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int N(1e5+);
int n, m, b, id[N];
LL bucket[N], sum[N], a[N];
char op[]; LL SUM(int x){
LL res=;
int R=id[x+]-;
for(int i=; i<=R; i++) res+=bucket[i];
for(int i=R*b+; i<=x; i++) res+=a[i];
for(int i=; i<b; i++) res+=((x-)/i+)*sum[i];
return res;
} int main(){
for(; ~scanf("%d%d", &n, &m); ){
memset(a, , sizeof(a));
memset(bucket, , sizeof(bucket));
memset(sum, , sizeof(sum));
b=sqrt(n);
for(int i=; i<=n+; i++) id[i]=(i-)/b+;
for(int d, x, l, r; m--; ){
scanf("%s", op);
if(*op=='A'){
scanf("%d%d", &d, &x);
if(d>=b) for(int i=; i<=n; i+=d) a[i]+=x, bucket[id[i]]+=x;
else sum[d]+=x;
}
else scanf("%d%d", &l, &r), printf("%lld\n", SUM(r)-SUM(l-));
}
}
return ;
}

DLUTOJ #1306 Segment Tree?的更多相关文章

  1. BestCoder#16 A-Revenge of Segment Tree

    Revenge of Segment Tree Problem Description In computer science, a segment tree is a tree data struc ...

  2. [LintCode] Segment Tree Build II 建立线段树之二

    The structure of Segment Tree is a binary tree which each node has two attributes startand end denot ...

  3. [LintCode] Segment Tree Build 建立线段树

    The structure of Segment Tree is a binary tree which each node has two attributes start and end deno ...

  4. Segment Tree Modify

    For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in thi ...

  5. Segment Tree Query I & II

    Segment Tree Query I For an integer array (index from 0 to n-1, where n is the size of this array), ...

  6. Segment Tree Build I & II

    Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...

  7. Lintcode: Segment Tree Query II

    For an array, we can build a SegmentTree for it, each node stores an extra attribute count to denote ...

  8. Lintcode: Segment Tree Modify

    For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in thi ...

  9. Lintcode: Segment Tree Query

    For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding ...

随机推荐

  1. 2014Ember带来怎样的变化?

    每隔几个月的时间,Ember的核心团队就会聚在一起讨论目前遇到的各种问题,并决定下一季度需要优先处理的各种事务. 这一次,在俄勒冈州的波特兰,大家聚在一起,商讨2014年的发展方向. 开发工具 &am ...

  2. Chrome 开发工具 Javascript 调试技巧

    http://www.w3cplus.com/tools/dev-tips.html 一.Sources 面板介绍: Sources 面板分为左中右 3 部分左:Sources 当前页面加载的资源列表 ...

  3. WPF RadioButton 转换

    模型 public class people { public string name{get;set;} public bool? sex{get;set;} } 转换器 namespace Hel ...

  4. 了解了这些才能开始发挥jQuery的威力(转)

    链接:http://www.cnblogs.com/dolphinX/archive/2013/10/08/3347677.html 由于当前jQuery如此的如雷贯耳,相信不用介绍什么是jQuery ...

  5. Go 命令之 godep

    本文参考:http://www.cnblogs.com/me115/p/5528463.html#h20 http://studygolang.com/articles/4385 关于Godep 发现 ...

  6. [转]iOS 应用内付费(IAP)开发步骤

    FROM : http://blog.csdn.net/xiaoxiangzhu660810/article/details/17434907 参考文章链接: (1)http://mobile.51c ...

  7. ping提示小结

    1,Win7 ping 不存在的地址(请求超时) 因为路由器不理睬他. 2,R1-R2-R3 R1有默认路由,R1 ping不存在的地址(目标不可达) 3,R1-R2 R1ping本网段中不存在的地址 ...

  8. Android 下的EXIF

    一.什么是Exif Exif(Exchangeable Image File 可交换图像文件)是一种图象文件格式,它的数据存储与JPEG格式是完全相同的.实际上Exif格式就是在JPEG格式头部插入了 ...

  9. 封装WCF客户端调用

    在之前的博客中,我记录过如何利用SvcUtil.exe工具生成客户端的代理文件,然后调用的情形. 今天我要讲解的是利用代码直接对服务端进行调用.好处在于,一是不会生成那么大的引用文件,其次是可以方便控 ...

  10. Edittext焦点处理

    <LinearLayout android:focusable="true" android:layout_width="0dp" android:lay ...