/*
poj 1474 Video Surveillance - 求多边形有没有核 */
#include <stdio.h>
#include<math.h>
const double eps=1e-8;
const int N=103;
struct point
{
double x,y;
}dian[N];
inline bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
inline bool mo_gg(double x,double y) { return x > y + eps;} // x > y
inline bool mo_ll(double x,double y) { return x < y - eps;} // x < y
inline bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
inline bool mo_le(double x,double y) { return x < y + eps;} // x <= y
inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
///////////////////////// //切割法求半平面交
point mo_banjiao_jiao[N*2];
point mo_banjiao_jiao_temp[N*2];
void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian)
{
int i,k;
for(i=k=0;i<nofdian;++i)
{
double a,b;
a=mo_xmult(hou,ans[i],qian);
b=mo_xmult(hou,ans[(i+1)%nofdian],qian);
if(mo_le(a,0))//顺时针就是<=0
{
mo_banjiao_jiao_temp[k++]=ans[i];
}if(mo_ll(a*b,0))
{
mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]);
}
}
for(i=0;i<k;++i)
{
ans[i]=mo_banjiao_jiao_temp[i];
}
nofdian=k;
}
int mo_banjiao(point *dian,int n)
{
int i,nofdian;
nofdian=n;
for(i=0;i<n;++i)
{
mo_banjiao_jiao[i]=dian[i];
}
for(i=0;i<n;++i)//i从0开始
{
mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian);
if(nofdian==0)
{
return nofdian;
}
}
return nofdian;
}
/////////////////////////
int main()
{
int t,i,n,iofcase=1;
while(scanf("%d",&n),n)
{ for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
int ret=mo_banjiao(dian,n);
if(ret==0)
{
printf("Floor #%d\n",iofcase++);
printf("Surveillance is impossible.\n\n");
}else
{
printf("Floor #%d\n",iofcase++);
printf("Surveillance is possible.\n\n");
}
}
return 0;
}

poj 1474 Video Surveillance - 求多边形有没有核的更多相关文章

  1. poj 1474 Video Surveillance (半平面交)

    链接:http://poj.org/problem?id=1474 Video Surveillance Time Limit: 1000MS   Memory Limit: 10000K Total ...

  2. poj 1474 Video Surveillance 【半平面交】

    半平面交求多边形的核,注意边是顺时针给出的 //卡精致死于是换(?)了一种求半平面交的方法-- #include<iostream> #include<cstdio> #inc ...

  3. ●poj 1474 Video Surveillance

    题链: http://poj.org/problem?id=1474 题解: 计算几何,半平面交 半平面交裸题,快要恶心死我啦... (了无数次之后,一怒之下把onleft改为onright,然后还加 ...

  4. POJ 1474 Video Surveillance 半平面交/多边形核是否存在

    http://poj.org/problem?id=1474 解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上... /********************* ...

  5. POJ 1474 Video Surveillance(半平面交)

    题目链接 2Y,模版抄错了一点. #include <cstdio> #include <cstring> #include <string> #include & ...

  6. poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版

    /* poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 */ #include <stdio.h> #include ...

  7. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  8. poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7038   Accepted: 3242 Description ...

  9. POJ - 1474 :Video Surveillance (半平面交-求核)

    pro:顺时针给定多边形,问是否可以放一个监控,可以监控到所有地方,即问是否存在多边形的核. 此题如果两点在同一边界上(且没有被隔段),也可以相互看到. sol:求多边形是否有核.先给直线按角度排序, ...

随机推荐

  1. node.js WebService异常处理(domain)以及利用domain实现request生命周期的全局变量

    成熟的Web Service技术,例如Fast CGI.J2EE.php,必然会对代码异常有足够的保护,好的Web必然会在出错后给出友好的提示,而不是莫名其妙的等待504超时.而node.js这里比较 ...

  2. 多看Kindle的“导出失败,请检查网络或账号”错误的解决

    一直都用得好好的,今天突然不行了,报错“导出失败,请检查网络或账号”. 网上搜索,试了一下这个方法: 我目前的解决办法是:先同步至小米账户(需要联网,并在Kindle系统设置 -> 阅读 -&g ...

  3. 初识React,Virutal DOM, State以及生命周期

    这是React分类下的第一篇文章,是在了解了一些基本面后,看Tyler文章,边看边理解边写的. React可以看做是MVC中的V,关注的是视图层.React的组件就像Angular的Directive ...

  4. Parallel的陷阱

    ,).ToArray(); ; Parallel.For<int>( fromInclusive: , toExclusive: nums.Length, /* 陷阱 */ localIn ...

  5. GitHub前50名的Objective-C动画相关库

    GitHub的Objective-C的动画UI库其实是最多的一部分,GitHub有相当一部分的动画大牛,如Jonathan George,Nick Lockwood,Kevin,Roman Efimo ...

  6. 关于Domino数据库的软删除

    在Domino的数据库属性的 “高级” 附签(选择文件->数据库->属性),选中“允许软删除”,这样我们就启用了软删除功能,当一个文档没有删除的时候我们可以使用NotesDatabase的 ...

  7. 高级屏幕空间反射: Screen Space Reflection (SSR)

    自从CE3首倡SSR以来,发展至今,其质量与当年早已不能同日而语.不仅强调超越性的质量,而且强调超越性的性能.乘着周末有空撸了撸,以下是增强型实时SSR结果图.与我原来的SSR原始实现相比,新的增强型 ...

  8. 使用Gradle自动发布Java Web到SAE

    博客已迁移,请访问:http://www.huangyunkun.com/ 现在像SAE这类的应用引擎已经比较多了,百度和腾讯都出了这样的东西. 我很早的时候就开始用SAE,当时还为了迁就SAE学习了 ...

  9. 频域分辨率与DFT,DCT,MDCT理解

    搞了这么久音频算法,有些细节还没有很清楚. 比如DFT和DCT有哪些区别,DFT系数为什么会是对称的,同样帧长的数据,各自的频域分辨率是多少? 今天决定搞清楚这些问题, 首先DFT的系数对称(2N点的 ...

  10. session204 imessageApp sticker part I要点

    session204 imessageApp sticker partI 工程文件:https://developer.apple.com/library/prerelease/content/sam ...