今天早上一来,数据库load就比往常高了许多。想想数据库唯一的变化是昨天早上我曾经重新分析过数据库对象。

[@more@]

发现数据库load很高,首先看top发现没有特别异常的进程,在数据库中适时抓取正在运行的sql也没发现异常(通常运行时间非常短的sql是不能被抓取到的)。询问相关应用程序人员,最近没有变动。检查应用程序日志发现今天早上跟往常也没有过多登陆和操作。基本上可以圈定是在数据库服务器本身上面。

但是这个时候我还没有办法确定到底是哪个应用的哪个查询的问题,因为数百个进程的几十台server连着,我不能去及时的追踪。打算等到10点过去后,抽取8/9/10高峰期的整点的statspack出来,跟上星期的这个时间产生的报告对比看看。

通过对比报告我们发现 CPU TIME 今天一小时内增加了大约1200秒(2,341  - 1,175    )。这是一个重大的变化,很显然是两种可能

1:今天过多地执行了某些sql

2:某些sql的执行计划发生变化导致cpu使用过多

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                     % Total
Event                                               Waits    Time (s) Ela Time
-------------------------------------------- ------------ ----------- --------
CPU time                                                        2,341    42.60
db file sequential read                           387,534       2,255    41.04
global cache cr request                           745,170         231     4.21
log file sync                                      98,041         229     4.17
log file parallel write                            96,264         158     2.88

Event                                               Waits    Time (s) Ela Time
-------------------------------------------- ------------ ----------- --------
db file sequential read                           346,851       1,606    47.60
CPU time                                                        1,175    34.83
global cache cr request                           731,368         206     6.10
log file sync                                      90,556          91     2.71
db file scattered read                             37,746          90     2.66

接下来我对比了 sql 部分内容,发现

Buffer Gets    Executions  Gets per Exec  %Total Time (s)  Time (s) Hash Value
--------------- ------------ -------------- ------ -------- --------- ----------
     17,899,606       47,667          375.5   55.6  1161.27   1170.22 3481369999
Module: /home/oracle/AlitalkSrv/config/../../AlitalkSrv/
SELECT login_id, to_char(gmt_create, 'YYYY-MM-DD HH24:MI:SS')
  from IM_BlackList     where black_id = :b1

这条sql出现在了今天报告的前列,而以往的报告中该sql根本不排在 buffer  gets 前面位置,显然这条sql消耗了大约  1161.27 秒 cpu  time .检查原来的报告

Buffer Gets    Executions  Gets per Exec  %Total Time (s)  Time (s) Hash Value
--------------- ------------ -------------- ------ -------- --------- ----------

107,937       47,128            2.3    0.8     7.39      6.94 3481369999
Module: /home/oracle/AlitalkSrv/config/../../AlitalkSrv/
SELECT login_id, to_char(gmt_create, 'YYYY-MM-DD HH24:MI:SS')
  from IM_BlackList     where black_id = :b1

我们发现只消耗了  7.39 秒的 cpu time 。

到这个时候我基本可以断定,是由于这个sql没有走索引而走了全表扫描。但是为什么会走全表扫描呢,这是一个问题,接下来我检查了表的索引:

SQL>      select  index_name,column_name from  user_ind_columns where  table_name = 'IM_BLACKLIST';

IM_BLACKLIST_PK                LOGIN_ID
IM_BLACKLIST_PK                BLACK_ID
IM_BLACKLIST_LID_IND           BLACK_ID

很显然存在着 black_id 的单独的索引,应该正常使用才对。于是我在生产库上执行这个sql一看,却发现走了全表扫描。为此我到一个周六的standby的opren  read  only 的数据库上查询了一下该索引字段的histogram(这个时候昨天早上分析对象的日志还没有被应用过去)

sys@OCN> select  COLUMN_NAME ,ENDPOINT_NUMBER, ENDPOINT_VALUE  , ENDPOINT_ACTUAL_VALUE  from  dba_histograms
  2   where  table_name =  'IM_BLACKLIST' and  column_name = 'BLACK_ID';

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
BLACK_ID                                     0     2.5031E+35
BLACK_ID                                     1     2.6065E+35
BLACK_ID                                     2     2.8661E+35
BLACK_ID                                     3     5.0579E+35
BLACK_ID                                     4     5.0585E+35
BLACK_ID                                     5     5.0585E+35
BLACK_ID                                     6     5.0589E+35
BLACK_ID                                     7     5.0601E+35
BLACK_ID                                     8     5.1082E+35
BLACK_ID                                     9     5.1119E+35
BLACK_ID                                    10     5.1615E+35
BLACK_ID                                    11     5.1616E+35
BLACK_ID                                    12     5.1628E+35
BLACK_ID                                    13     5.1646E+35
BLACK_ID                                    14     5.2121E+35
BLACK_ID                                    15     5.2133E+35
BLACK_ID                                    16     5.2155E+35
BLACK_ID                                    17     5.2662E+35
BLACK_ID                                    18     5.3169E+35
BLACK_ID                                    19     5.3193E+35
BLACK_ID                                    20     5.3686E+35
BLACK_ID                                    21     5.3719E+35
BLACK_ID                                    22     5.4198E+35
BLACK_ID                                    23     5.4206E+35
BLACK_ID                                    24     5.4214E+35
BLACK_ID                                    25     5.4224E+35
BLACK_ID                                    26     5.4238E+35
BLACK_ID                                    27     5.4246E+35
BLACK_ID                                    28     5.4743E+35
BLACK_ID                                    29     5.5244E+35
BLACK_ID                                    30     5.5252E+35
BLACK_ID                                    31     5.5252E+35
BLACK_ID                                    32     5.5272E+35
BLACK_ID                                    33     5.5277E+35
BLACK_ID                                    34     5.5285E+35
BLACK_ID                                    35     5.5763E+35
BLACK_ID                                    36     5.6274E+35
BLACK_ID                                    37     5.6291E+35
BLACK_ID                                    38     5.6291E+35
BLACK_ID                                    39     5.6291E+35
BLACK_ID                                    40     5.6291E+35
BLACK_ID                                    42     5.6311E+35
BLACK_ID                                    43     5.6794E+35
BLACK_ID                                    44     5.6810E+35
BLACK_ID                                    45     5.6842E+35
BLACK_ID                                    46     5.7351E+35
BLACK_ID                                    47     5.8359E+35
BLACK_ID                                    48     5.8887E+35
BLACK_ID                                    49     5.8921E+35
BLACK_ID                                    50     5.9430E+35
BLACK_ID                                    51     5.9913E+35
BLACK_ID                                    52     5.9923E+35
BLACK_ID                                    53     5.9923E+35
BLACK_ID                                    54     5.9931E+35
BLACK_ID                                    55     5.9947E+35
BLACK_ID                                    56     5.9959E+35
BLACK_ID                                    57     6.0428E+35
BLACK_ID                                    58     6.0457E+35
BLACK_ID                                    59     6.0477E+35
BLACK_ID                                    60     6.0479E+35
BLACK_ID                                    61     6.1986E+35
BLACK_ID                                    62     6.1986E+35
BLACK_ID                                    63     6.1994E+35
BLACK_ID                                    64     6.2024E+35
BLACK_ID                                    65     6.2037E+35
BLACK_ID                                    66     6.2521E+35
BLACK_ID                                    67     6.2546E+35
BLACK_ID                                    68     6.3033E+35
BLACK_ID                                    69     6.3053E+35
BLACK_ID                                    70     6.3069E+35
BLACK_ID                                    71     6.3553E+35
BLACK_ID                                    72     6.3558E+35
BLACK_ID                                    73     6.3562E+35
BLACK_ID                                    74     6.3580E+35
BLACK_ID                                    75     1.1051E+36

然后对比了一下当前的histograms

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
BLACK_ID                                     0     1.6715E+35
BLACK_ID                                     1     2.5558E+35
BLACK_ID                                     2     2.7619E+35
BLACK_ID                                     3     2.9185E+35
BLACK_ID                                     4     5.0579E+35
BLACK_ID                                     5     5.0589E+35
BLACK_ID                                     6     5.0601E+35
BLACK_ID                                     7     5.1100E+35
BLACK_ID                                     8     5.1601E+35
BLACK_ID                                     9     5.1615E+35
BLACK_ID                                    10     5.1624E+35
BLACK_ID                                    11     5.1628E+35
BLACK_ID                                    12     5.1642E+35
BLACK_ID                                    13     5.2121E+35
BLACK_ID                                    14     5.2131E+35
BLACK_ID                                    15     5.2155E+35
BLACK_ID                                    16     5.2676E+35
BLACK_ID                                    17     5.3175E+35
BLACK_ID                                    18     5.3684E+35
BLACK_ID                                    19     5.3727E+35
BLACK_ID                                    20     5.4197E+35
BLACK_ID                                    21     5.4200E+35
BLACK_ID                                    22     5.4217E+35
BLACK_ID                                    23     5.4238E+35
BLACK_ID                                    24     5.4244E+35
BLACK_ID                                    25     5.4755E+35
BLACK_ID                                    26     5.5252E+35
BLACK_ID                                    27     5.5252E+35
BLACK_ID                                    28     5.5252E+35
BLACK_ID                                    29     5.5283E+35
BLACK_ID                                    30     5.5771E+35
BLACK_ID                                    31     5.6282E+35
BLACK_ID                                    32     5.6291E+35
BLACK_ID                                    33     5.6291E+35
BLACK_ID                                    34     5.6291E+35
BLACK_ID                                    35     5.6299E+35
BLACK_ID                                    36     5.6315E+35
BLACK_ID                                    37     5.6794E+35
BLACK_ID                                    39     5.6816E+35
BLACK_ID                                    40     5.6842E+35
BLACK_ID                                    41     5.7838E+35
BLACK_ID                                    42     5.8877E+35
BLACK_ID                                    43     5.8917E+35
BLACK_ID                                    44     5.9406E+35
BLACK_ID                                    45     5.9909E+35
BLACK_ID                                    46     5.9923E+35
BLACK_ID                                    47     5.9923E+35
BLACK_ID                                    48     5.9946E+35
BLACK_ID                                    49     5.9950E+35
BLACK_ID                                    50     5.9960E+35
BLACK_ID                                    51     5.9960E+35
BLACK_ID                                    52     5.9960E+35
BLACK_ID                                    53     5.9960E+35
BLACK_ID                                    54     5.9960E+35
BLACK_ID                                    55     5.9960E+35
BLACK_ID                                    56     5.9960E+35
BLACK_ID                                    57     6.0436E+35
BLACK_ID                                    58     6.0451E+35
BLACK_ID                                    59     6.0471E+35
BLACK_ID                                    60     6.1986E+35
BLACK_ID                                    61     6.1998E+35
BLACK_ID                                    62     6.2014E+35
BLACK_ID                                    63     6.2037E+35
BLACK_ID                                    64     6.2521E+35
BLACK_ID                                    65     6.2544E+35
BLACK_ID                                    66     6.3024E+35
BLACK_ID                                    67     6.3041E+35
BLACK_ID                                    68     6.3053E+35
BLACK_ID                                    69     6.3073E+35
BLACK_ID                                    70     6.3558E+35
BLACK_ID                                    71     6.3558E+35
BLACK_ID                                    72     6.3558E+35
BLACK_ID                                    73     6.3558E+35
BLACK_ID                                    74     6.3580E+35
BLACK_ID                                    75     1.1160E+36

我们发现原来的histograms值分布比较均匀,而昨天分析后的值分布就有一些地方是集中的,参考上面红色部分。

于是我再做了个 10053  dump对比,昨天分析之前

通过  alter session set events '10053 trace name context forever';

然后执行相关的sql 再去看trace文件

Table stats    Table: IM_BLACKLIST   Alias: IM_BLACKLIST
  TOTAL ::  CDN: 57477  NBLKS:  374  AVG_ROW_LEN:  38
-- Index stats
  INDEX NAME: IM_BLACKLIST_LID_IND  COL#: 2 
    TOTAL ::  LVLS: 1   #LB: 219  #DK: 17181  LB/K: 1  DB/K: 2  CLUF: 44331
  INDEX NAME: IM_BLACKLIST_PK  COL#: 1 2 
    TOTAL ::  LVLS: 1   #LB: 304  #DK: 57477  LB/K: 1  DB/K: 1  CLUF: 55141
_OPTIMIZER_PERCENT_PARALLEL = 0
***************************************
SINGLE TABLE ACCESS PATH
Column:   BLACK_ID  Col#: 2      Table: IM_BLACKLIST   Alias: IM_BLACKLIST
    NDV: 17181     NULLS: 0         DENS: 5.8204e-05
    NO HISTOGRAM: #BKT: 1 #VAL: 2
  TABLE: IM_BLACKLIST     ORIG CDN: 57477  ROUNDED CDN: 3  CMPTD CDN: 3
  Access path: tsc  Resc:  38  Resp:  38
  Access path: index (equal)
      Index: IM_BLACKLIST_LID_IND
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 4
  IX_SEL:  0.0000e+00  TB_SEL:  5.8204e-05
  Skip scan: ss-sel 0  andv 27259  
    ss cost 27259 
    table io scan cost 38 
  Access path: index (no sta/stp keys)
      Index: IM_BLACKLIST_PK
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 309
  IX_SEL:  1.0000e+00  TB_SEL:  5.8204e-05
  BEST_CST: 4.00  PATH: 4  Degree:  1
***************************************
OPTIMIZER STATISTICS AND COMPUTATIONS
***************************************
GENERAL PLANS
***********************
Join order[1]: IM_BLACKLIST [IM_BLACKLIST] 
Best so far: TABLE#: 0  CST:          4  CDN:          3  BYTES:         75
Final:
  CST: 4  CDN: 3  RSC: 4  RSP: 4  BYTES: 75
  IO-RSC: 4  IO-RSP: 4  CPU-RSC: 0  CPU-RSP: 0

这是昨天分析之后的

SINGLE TABLE ACCESS PATH
Column:   BLACK_ID  Col#: 2      Table: IM_BLACKLIST   Alias: IM_BLACKLIST
    NDV: 17069     NULLS: 0         DENS: 1.4470e-03
    HEIGHT BALANCED HISTOGRAM: #BKT: 75 #VAL: 75
  TABLE: IM_BLACKLIST     ORIG CDN: 57267  ROUNDED CDN: 83  CMPTD CDN: 83
  Access path: tsc  Resc:  38  Resp:  38
  Access path: index (equal)
      Index: IM_BLACKLIST_LID_IND
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 65
  IX_SEL:  0.0000e+00  TB_SEL:  1.4470e-03
  Skip scan: ss-sel 0  andv 27151  
    ss cost 27151 
    table io scan cost 38 
  Access path: index (no sta/stp keys)
      Index: IM_BLACKLIST_PK
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 384
  IX_SEL:  1.0000e+00  TB_SEL:  1.4470e-03
  BEST_CST: 38.00  PATH: 2  Degree:  1
***************************************
OPTIMIZER STATISTICS AND COMPUTATIONS
***************************************
GENERAL PLANS
***********************
Join order[1]: IM_BLACKLIST [IM_BLACKLIST] 
Best so far: TABLE#: 0  CST:         38  CDN:         83  BYTES:       2407
Final:
  CST: 38  CDN: 83  RSC: 38  RSP: 38  BYTES: 2407
  IO-RSC: 38  IO-RSP: 38  CPU-RSC: 0  CPU-RSP: 0

我发现分析之前之后全表扫描cost都是38,但是分析之后的根据索引扫描却成为了 65 ,而分析之前是4。

很显然是由于这个查询导致昨天早上分析之后走了全表扫描。于是我再对表进行了分析,只不过这次我没有分析索引字段,而是

analyze table im_blacklist compute  statistics;

这样之后,dbms_histograms 中信息只剩下

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
GMT_CREATE                                   0     2452842.68
GMT_MODIFIED                                 0     2452842.68
LOGIN_ID                                     0     2.5021E+35
BLACK_ID                                     0     1.6715E+35
GMT_CREATE                                   1     2453269.44
GMT_MODIFIED                                 1     2453269.44
LOGIN_ID                                     1     6.3594E+35
BLACK_ID                                     1     1.1160E+36

再执行该sql,就走了索引,从而使得数据库的load降了下来。

分析这整个过程中,我无法知道oracle的走索引cost  65 是怎么计算出来的,当然是跟 histograms有关,但计算方法我却是不清楚的。

这条sql是 bind  var,但是却走了全表扫描,这是由于920中数据库在对bind  var 的sql进行第一次解析的时候去histograms中窥视了数据分布从而根据cost选择了FTS。然后后面继续执行的sql呢,则不论是否该走索引,都走了FTS。这是920这个版本的特性的弊病。也就是说,这有偶然性因素的存在。 但是对于这个表,我做了分析(不分析索引字段)之后不存在histograms,则sql无论如何都走了索引扫描。

转:http://blog.itpub.net/7509771/viewspace-778742/

一条sql导致数据库整体性能下降的诊断和解决的全过程的更多相关文章

  1. 【原创】分布式之数据库和缓存双写一致性方案解析(三) 前端面试送命题(二)-callback,promise,generator,async-await JS的进阶技巧 前端面试送命题(一)-JS三座大山 Nodejs的运行原理-科普篇 优化设计提高sql类数据库的性能 简单理解token机制

    [原创]分布式之数据库和缓存双写一致性方案解析(三)   正文 博主本来觉得,<分布式之数据库和缓存双写一致性方案解析>,一文已经十分清晰.然而这一两天,有人在微信上私聊我,觉得应该要采用 ...

  2. [翻译]通过使用正确的search arguments来提高SQL Server数据库的性能

    原文地址:http://www.sqlpassion.at/archive/2014/04/08/improving-query-performance-by-using-correct-search ...

  3. 优化设计提高sql类数据库的性能

    前言 在一个项目中,技术的统一性是最重要的,数据库的设计则是重点中的重点.NoSQL 是目前最流行的数据库,但是其实用性和功能性远不如sql数据库. 实际很多SQL数据库被诟病的性能问题大多是源于程序 ...

  4. ES JVM使用如果超过75%就会GC较多,导致ES索引性能下降

    转自:https://www.elastic.co/guide/en/cloud/current/ec-metrics-memory-pressure.html Scenario: How Does ...

  5. 一条sql查出数据库某张表的所有属性

    select t.TABLE_NAME,--表名 t.COLUMN_NAME,--字段名 t.DATA_TYPE,--字段属性 t.DATA_LENGTH,--类型长度 t.DATA_PRECISIO ...

  6. 关于Asp.net超时,延长读取sql server数据库的超时时间!(已解决)

    昨天,接到客户反映说应用报“超时时间已到.在操作完成之前超时时间已过或服务器未响应”问题.从网上了一些资料,发现这个问题还是很普遍的.主要有以下两种解决方法: 第一种方法:在web.config中加上 ...

  7. 向Sql Server数据库插入中文时显示乱码的解决办法 (转)

    转自:http://blog.csdn.net/wizardlun/article/details/4577658 參考:http://shareideas.blog.51cto.com/362642 ...

  8. SQL Server ->> 性能调优案例之 -- 包含递归查询的视图导致整个查询语句性能下降

    有个语句最近性能下降很厉害,原本1秒就可以查询完毕的事情现在居然需要3-4分钟. 首先我的做法是先快速找出导致整个语句下降的元凶.在这个例子里面查询语句有3个JOIN字句,我通过删除某一个JOIN节点 ...

  9. SQL SERVER数据库删除LOG文件和清空日志的方案

    原文:SQL SERVER数据库删除LOG文件和清空日志的方案 数据库在使用过程中会使日志文件不断增加,使得数据库的性能下降,并且占用大量的磁盘空间.SQL Server数据库都有log文件,log文 ...

随机推荐

  1. C Primer Plus之存储类、链接和内存管理

    存储时期即生存周期——变量在内存中保留的时间 变量的作用域和链接一起表明程序的哪些部分可以通过变量名来使用该变量. 注意:生存期和作用域是两个不同的概念. 作用域    作用域描述了程序中可以访问一个 ...

  2. C#获取当前路径的方法

    C#获取当前路径的方法如下: 1. System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName -获取模块的完整路径. 2. ...

  3. Gradle Goodness: Rename Ant Task Names When Importing Ant Build File

    Migrating from Ant to Gradle is very easy with the importBuild method from AntBuilder. We only have ...

  4. android-non-ui-to-ui-thread-communications-part-4-of-5

    In parts 1-3 of this series, I have explored three different means for an Android non-UI thread to c ...

  5. EasyBCD 硬盘安装Pear OS

    Pear OS是一个界面很像mac的Linux distro,基于Ubuntu,免费.可惜的是pear被一个大公司匿名收购,所以现在不更新啦,最后的版本是pear 8.有个pear的替代者elemen ...

  6. 关于CStdioFile的使用问题

    在win32控制台调试如下程序 #include "stdafx.h"#include <afx.h>//#include <iostream>//usin ...

  7. Android 核心分析 之五基本空间划分

    基本空间划分 Google给了我们一张系统架构图,在这张图上我们可以看到Android的大体框架组成.                   11.jpg (175.6 KB, 下载次数: 0) 下载附 ...

  8. Tomcat中xml文件引入各种schma xsd问题原理

    1.Tomcat下的xml引入各种xsd约束,其实是为了对应xml中用到的各个标签

  9. MDX语法

    https://msdn.microsoft.com/zh-cn/library/ms145506.aspx

  10. Java SpringMVC实现国际化整合案例分析(i18n)

    所谓国际化就是支持多种语言,web应用在不同的浏览环境中可以显示出不同的语言,比如说汉语.英语等.下面我将以具体的实例来举例说明: (1)新建动态Javaweb项目,并导入几个SpringMVC必需的 ...