题意是一排路灯,每个路灯有耗电量,照明度,需要给这n个路灯按顺序分组,每组内的最大耗电量是电灯数乘t,可以选择关闭一些电灯,求最大的照明度;

这题思路很明显,预处理出一个g[i][j]表示i到j分为一组的最大照明度,f[i][j]表示前i个分为j组的最大照明度,f[i][j]=max(f[k-1][j-1]+f[k][i]);

朴素的预处理是这么搞的

 int h[maxm*maxn];
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++){
memset(h,,sizeof(h));
int s=(j-i+)*t;
for(int k=i;k<=j;k++)
for(int c=s;c>=;c--){
if(c<w[k])break;
h[c]=max(h[c],h[c-w[k]]+v[k]);
}
g[i][j]=g[j][i]=h[s];
}

n^4,无法接受,观察了一下,发现h数组每次都这么清一遍太浪费了,要想想怎么从前面的h中获取信息,发现每次h中有i-j的最优信息,然后处理i-j+1的时候相当于又处理了一遍i-j,要找i-j+1的g值,可以考虑一下不清空h数组,直接从j+1向上搞,但是每次最大耗电量都不一样,直接可以设成i-n的最大耗电,然后每次处理完后,在1-当前最大耗电里找最大值就行了,省了一维,可以通过了;

修改代码:

 #include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
using namespace std;
const int maxn=,maxm=;
int n,m,t,w[maxn],v[maxn];
int g[maxn][maxn],f[maxn][maxm];
void init(){
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)scanf("%d%d",&w[i],&v[i]);
int h[maxn*maxn];
for(int i=;i<=n;i++){
memset(h,,sizeof(h));
int s=(n-i+)*t;
for(int j=i;j<=n;j++){
int S=(j-i+)*t;
for(int c=s;c>=;c--){
if(c<w[j])break;
h[c]=max(h[c],h[c-w[j]]+v[j]);
}
g[i][j]=g[j][i]=h[S];
}
}
}
void work(){
for(int i=;i<=n;i++)
for(int k=;k<=m&&k<=i;k++){
for(int j=k;j<=i;j++){
f[i][k]=max(f[i][k],f[j-][k-]+g[j][i]);
}
}
cout<<f[n][m]<<endl;
}
int main(){
init();
work();
}

关灯问题 dp的更多相关文章

  1. 状压DP【p2622】 关灯问题II

    题目描述--->P2622 关灯问题II 没用的话: 首先第一眼看到题,嗯?n<=10?搜索? 满心欢喜地敲了一通搜索. 交上去,Wa声一片? 全部MLE! 这么坑人神奇? 一想,可能是爆 ...

  2. 关灯问题II 状压DP

    关灯问题II 状压DP \(n\)个灯,\(m\)个按钮,每个按钮都会对每个灯有不同影响,问最少多少次使灯熄完. \(n\le 10,m\le 100\) 状压DP的好题,体现了状压的基本套路与二进制 ...

  3. [状压DP]关灯问题II

    关 灯 问 题 I I 关灯问题II 关灯问题II 题目描述 现有n盏灯,以及 m m m个按钮.每个按钮可以同时控制这 n n n盏灯--按下了第 i i i个按钮,对于所有的灯都有一个效果.按下i ...

  4. 洛谷 P2622 关灯问题II【状压DP;隐式图搜索】

    题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...

  5. [Luogu2622]关灯问题$||$(状压$DP$)

    #\(\color{red}{\mathcal{Description}}\) \(Link\) 现有\(n\)盏灯,以及\(m\)个按钮.每个按钮可以同时控制这\(n\)盏灯--按下了第i个按钮,对 ...

  6. 洛谷 P2622 关灯问题II【状压DP】

    传送门:https://www.luogu.org/problemnew/show/P2622 题面: 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的 ...

  7. 洛谷 P2622 关灯问题II(状压DP入门题)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int n,m; ];//a[i][j] : 第i个开关对第j个 ...

  8. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  9. 区间型DP

    区间型DP是一类经典的动态规划问题,主要特征是可以先将大区间拆分成小区间求解最后由小区间的解得到大区间的解. 有三道例题 一.石子合并 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆. ...

随机推荐

  1. 各种数据处理方案(SQL,NoSQL,其他)的应用场景

    综合stackoverflow和linkin上的相关讨论,还有我个人的工作经验:   Redis应用场景(大部分场景下memcache可以用Redis代替,所以不单独讨论) 线上业务,读写的高性能要求 ...

  2. 分析MapReduce执行过程

    分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出. Reducer任务会接收Mapper任务输 ...

  3. struts2集成javamail发邮件(带附件)实践记录

    一.代码预览 这两天在做struts2上的邮件发送.以前的项目有用到spring,用spring提供的邮件支持类很方便可以完成这个功能,但是现在只用struts2的话,就碰到了一系列的问题. 代码是从 ...

  4. C#高级功能(一)Lambda 表达式

    Lambda 表达式是一种可用于创建委托或表达式目录树类型的匿名函数. 通过使用 lambda 表达式,可以写入可作为参数传递或作为函数调用值返回的本地函数. Lambda 表达式对于编写 LINQ ...

  5. Flask Web Development —— Web表单(上)

    Flask-WTF扩展使得处理web表单能获得更愉快的体验.该扩展是一个封装了与框架无关的WTForms包的Flask集成. Flask-WTF和它的依赖集可以通过pip来安装: (venv) $ p ...

  6. RAC本地数据文件迁移至ASM的方法--非归档模式

    系统环境:rhel6.2_x64+Oracle RAC11g 操作过程: 1.非归档模式 SQL> archive log list; Database log mode No Archive ...

  7. Oracle Study Note : Tablespace and Data Files

    1.how to create a tablespace that employs the most common features create tablespace tb_name #create ...

  8. 对 Linux 新手非常有用的20个命令

    你打算从Windows换到Linux上来,还是你刚好换到Linux上来?哎哟!!!我说什么呢,是什么原因你就出现我的世界里了.从我以往的经验来说,当我刚使用Linux,命令,终端啊什么的,吓了我一跳. ...

  9. linux php安装zookeeper扩展

    linux php安装zookeeper扩展 tags:php zookeeper linux ext 前言: zookeeper提供很犀利的命名服务,并且集群操作具有原子性,所以在我的多个项目中被采 ...

  10. .NET基础:修饰符

    访问修饰符 软道语录定义: 访问修饰符就是类,属性和方法的电影分级制度 . public:访问不受限制. protected:访问仅限于包含类或从包含类派生的类型.只有包含该成员的类以及继承的类可以存 ...