数学


  orz hzwer

  完全不会做……

  很纠结啊,如果将来再遇到这种题,还是很难下手啊……

引用题解:

【分析】:

样例图示:

首先,最暴力的算法显而易见:枚举x轴上的每个点,带入圆的方程,检查是否算出的值是否为整点,这样的枚举量为2*N,显然过不了全点。

然后想数学方法。

有了上面的推理,那么实现的方法为:

枚举d∈[1,sqrt(2R)],然后根据上述推理可知:必先判d是否为2R的一约数。

此时d为2R的约数有两种情况:d=d或d=2R/d。

第一种情况:d=2R/d。枚举a∈[1,sqrt(2R/2d)] <由2*a*a < 2*R/d转变来>,算出对应的b=sqrt(2R/d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1

第二种情况:d=d。枚举a∈[1,sqrt(d/2)] <由2*a*a < d转变来>,算出对应的b=sqrt(d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1

因为这样只算出了第一象限的情况<上面枚举时均是从1开始枚举>,根据圆的对称性,其他象限的整点数与第一象限中的整点数相同,最后,在象限轴上的4个整点未算,加上即可,那么最后答案为ans=4*第一象限整点数+4

【时间复杂度分析】:

枚举d:O(sqrt(2R)),然后两次枚举a:O(sqrt(d/2))+O(sqrt(R/d)),求最大公约数:O(logN)

 /**************************************************************
Problem: 1041
User: Tunix
Language: C++
Result: Accepted
Time:192 ms
Memory:816 kb
****************************************************************/ //BZOJ 1000
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long LL;
typedef double lf;
/******************tamplate*********************/
LL r,ans;
LL gcd(LL x,LL y){return y?gcd(y,x%y):x;}
bool check(LL y,lf x){
if (x==floor(x)){
LL x1=x;
if (gcd(x1*x1,y*y)== && x1*x1!=y*y)
return ;
}
return false;
}
int main(){
scanf("%lld",&r);
for(LL d=;d<=sqrt(*r);d++)
if (*r%d==){
for(LL a=;a<=(LL)sqrt(*r/(*d));a++){
lf b=sqrt((*r)/d-a*a);
if (check(a,b))ans++;
}
if (d!=*r/d){
for(LL a=;a<=(LL)sqrt(d/);a++){
lf b=sqrt(d-a*a);
if (check(a,b))ans++;
}
}
}
printf("%lld\n",ans*+);
return ;
}

1041: [HAOI2008]圆上的整点

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2376  Solved: 1019
[Submit][Status][Discuss]

Description

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

r

Output

整点个数

Sample Input

4

Sample Output

4

HINT

n<=2000 000 000

Source

[Submit][Status][Discuss]

【BZOJ】【1041】【HAOI2008】圆周上的点的更多相关文章

  1. [bzoj 1041][HAOI2008]圆周上的整点(枚举)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 分析:实质上是求(a,b,c)勾股数的个数,其中c是确定的. 对于勾股数有一组通式: a ...

  2. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  3. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  4. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  5. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  6. BZOJ 1041 [HAOI2008]圆上的整点:数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  7. BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  8. BZOJ(2) 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4966  Solved: 2258[Submit][Sta ...

  9. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  10. 【BZOJ】1041: [HAOI2008]圆上的整点(几何)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...

随机推荐

  1. ThinkPHP整合支付宝即时到账接口调用

    首先是在支付宝的蚂蚁金服开放平台下载PHP的demo: https://doc.open.alipay.com/doc2/detail?treeId=62&articleId=103566&a ...

  2. php全角字符转换为半角函数 实例代码

    PHP全角半角转换函数,把目前能找到的所有全角都列出来了一个个替换吧. 之前试过网上找的通过ASCII之类的字符替换,发现很多莫名其妙的问题.最后还是换成下面的字符替换方式了,把目前能找到的所有全角都 ...

  3. 类似桌面背景壁纸随手指滑动--第三方开源--BackgroundViewPager

    Android BackgroundViewPager在github上的项目主页是:https://github.com/MoshDev/BackgroundViewPager 下载下来即可运行

  4. (转)Android如何编程设置APP安装位置(外部存储或内部存储)?

    Beginning with API Level 8, you can allow your application to be installed on the external storage ( ...

  5. php网页,想弹出对话框, 消息框 简单代码

    php网页,想弹出对话框, 消息框 简单代码 <?php echo "<script language=\"JavaScript\">alert(\&q ...

  6. Multi-Language IDE for Professional Developers (Komodo)

    Komodo is the professional IDE for major web languages, including Python, PHP, Ruby, Perl, HTML, CSS ...

  7. XAML(3) - 附带属性

    WPF元素也可以从父元素中获得特性.例如,如果Button元素为了Canvas元素中,按钮的Top和Lef属性把父元素的名称作为前缀.这种属性成为附带属性: <Canvas> <Bu ...

  8. 做HDU1010 带出来一个小问题

    做1010  本来是想的DFS深搜  但是自己凭空打  打不出来  因为没有记模板  然后就去搜  但是看了一遍  自己打却又是有BUG  然后验证  就出现了一个二维字符数组打印的问题 开始代码是这 ...

  9. Java中HashMap,LinkedHashMap,TreeMap的区别[转]

    原文:http://blog.csdn.net/xiyuan1999/article/details/6198394 java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类 ...

  10. Node.js中的模块化

    每天一篇文章来记录记录自己的成长吧.大二,该静心了.加油~ 好了,废话不多说,今天说说nodejs中的模块化.(注:此文为自己对书nodejs实战的总结) nodejs一个重要的特性就是模块化,模块就 ...