有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图。

一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林。

在工程计划和管理方面的应用

除最简单的情况之外,几乎所有的工程都可分为若干个称作“活动”的子工程,并且这些子工程之间通常受着一定条件的约束,例如:其中某些子工程必须在另一些子工

程完成之后才能开始。对整个工程和系统,人们关心的是两方面的问题:

一是工程能否顺利进行,即工程流程是否“合理”;

二是完成整个工程所必须的最短时间。

对应到有向图即为进行拓扑排序(AOV网)和求关键路径(AOE网)。

拓扑排序

AOV 网:用一个有向图表示一个工程的各子工程及其相互制约的关系,其中以顶点表示活动,弧表示活动之间的优先制约关系,称这种有向图为顶点表示活动的网,简称AOV (Activity On  Vertex network)网。

比如、某工程可分为7个子工程(V0、V1、V2、V3、V4、V5、V6),若用顶点表示子工程(也称活动),用弧表示子工程间的顺序关系,工程流程可用如下的AOV网表示。

比如排课表

AOV 网的特点:若从 i 到 j 有一条有向路径,则 i是 j 的前驱;j 是 i 的后继。若 < i , j > 是网中有向边,则 i 是 j 的直接前驱; j 是 i 的直接后继。AOV 网中不允许有回路,因为如果有回路存在,则表明某项活动以自己为先决条件,显然这是荒谬的。

问题:如何判别 AOV 网中是否存在回路?即如何AOV网表示的工程能顺利进行?合理?

拓扑排序:

在 AOV 网没有回路的前提下,我们将全部活动排列成一个线性序,使得若 AOV 网中有弧 <i,  j> 存在,则在这个序列中, i  一定排在  j的前面,具有这种性质的线性序列称为拓扑有序序列,相应的拓扑有序排序的算法称为拓扑排序。

注意:

1、若将图中顶点按拓扑次序排成一行,则图中所有的有向边均是从左指向右的。
2、若图中存在有向环,则不可能使顶点满足拓扑次序。
3、一个DAG可能存在多个拓扑序列。

检测 AOV 网中是否存在环方法:

DFS(深度优先搜索),出现返回边则有环;拓扑排序,若所有的顶点都出现在拓扑排序中,则不出现环。如果使用 DFS 进行拓扑排序,那么结果是逆向的拓扑排序有序序列。 
拓扑排序方法:
1)在有向图中选一个无前趋的顶点v,输出之;
2)从有向图中删除v及以v为尾的弧;

3)重复1)、2),直接全部输出全部顶点或有向图中不存在无前趋的结点时为止。

删除 v2,v3,v4,v5,v6以及以他们为尾部的弧

注意:一个AOV网的拓扑序列不是唯一的

有向无环图的应用—AOV网 和 拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 算法与数据结构(七) AOV网的拓扑排序(Swift版)

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  3. AOV网与拓扑排序

    在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network).AOV网中的弧表示活动 ...

  4. 拓扑排序-有向无环图(DAG, Directed Acyclic Graph)

    条件: 1.每个顶点出现且只出现一次. 2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面. 有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说. 一 ...

  5. JavaScript + SVG实现Web前端WorkFlow工作流DAG有向无环图

    一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也 ...

  6. 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP

    1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 187  Solved: 80[Submit][Status][Web Board ...

  7. javascript实现有向无环图中任意两点最短路径的dijistra算法

    有向无环图 一个无环的有向图称做有向无环图(directed acycline praph).简称DAG 图.DAG 图是一类较有向树更一般的特殊有向图, dijistra算法 摘自 http://w ...

  8. select 函数实现 三种拓扑结构 n个客户端的异步通信 (完全图+线性链表+无环图)

    一.这里只介绍简单的三个客户端异步通信(完全图拓扑结构) //建立管道 mkfifo open顺序: cl1 读 , cl2 cl3 向 cl1写 cl2 读 , cl1 cl3 向 cl2写 cl3 ...

  9. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

随机推荐

  1. Python中的多进程与多线程(一)

    一.背景 最近在Azkaban的测试工作中,需要在测试环境下模拟线上的调度场景进行稳定性测试.故而重操python旧业,通过python编写脚本来构造类似线上的调度场景.在脚本编写过程中,碰到这样一个 ...

  2. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  3. VisualVM通过jstatd方式远程监控远程主机

    配置好权限文件 [root@test bin]# cd $JAVA_HOME/bin [root@test bin]# vim jstatd.all.policy grant codebase &qu ...

  4. Electron使用与学习--(基本使用与菜单操作)

    对于electron是个新手,下面纯属个人理解.如有错误,欢迎指出.   一.安装 如果你本地按照github上的 # Install the `electron` command globally ...

  5. 简单有效的kmp算法

    以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...

  6. 奇葩问题-TextView无法获取值

    问题场景 前几天写一个界面的时候,遇到一个非常奇葩的问题.app第一次安装的时候,这里针对用户第一次安装的时候,后来是不会出现这个问题了.我明明是对某个界面的一个textview赋值了,而且服务端也返 ...

  7. Velocity笔记--使用Velocity获取动态Web项目名的问题

    以前使用jsp开发的时候,可以通过request很轻松的获取到根项目名,现在换到使用velocity渲染视图,因为已经不依赖servlet,request等一些类的环境,而Web项目的根项目名又不是写 ...

  8. [转载]强制不使用“兼容性视图”的HTML代码

    在IE8浏览器以后版本,都有一个"兼容性视图",让不少新技术无法使用.那么如何禁止浏览器自动选择"兼容性视图",强制IE以最高级别的可用模式显示内容呢?下面就介 ...

  9. 开发者最爱的Firebug停止更新和维护

        近日,Firebug团队在其官网上宣布,Firebug将不再继续开发和维护,并邀请大家使用Firefox的内置开发工具.     Firebug最初是2006年1月由Joe Hewitt编写, ...

  10. 【转】外部应用和drools-wb6.1集成解决方案

    一.手把手教你集成外部应用和drools workbench6.1 1.         首先按照官方文档安装workbench ,我用的是最完整版的jbpm6-console的平台系统,里面既包含j ...