StateMachine
Create State Machine
Create either a passive or an active state machine:
1
|
var fsm = new PassiveStateMachine<States, Events>() |
1
|
var fsm = new ActiveStateMachine<States, Events>() |
The above sample uses the enums States
and Events
that define the available states and events.
Define Transitions
A simple transition
1
2
|
fsm.In(States.A) .On(Events.B).Goto(States.B); |
If the state machine is in state A
and receives event B
then it performs a transition to state B
.
Transition with action
1
2
3
4
|
fsm.In(States.A) .On(Events.B) .Goto(States.B) .Execute(() => { /* do something here */ }); |
Actions are defined with Execute
. Multiple actions can be defined on a single transition. The actions are performed in the same order as they are defined. An action is defined as a delegate. Therefore, you can use lambda expressions or normal delegates. The following signatures are supported:
1
2
3
|
void TransitionAction<T>(T parameter) // to get access to argument passed to Fire void TransitionAction() // for actions that do not need access to the argument passed to Fire |
Actions can use the event argument that were passed to the Fire
method of the state machine. If the type you specify as the generic parameter type does not match the argument passed with the event, an exception is thrown.
Transition with guard
1
2
3
4
|
fsm.In(States.A) .On(Events.B) .If(arguments => false ).Goto(States.B1) .If(arguments => true ).Goto(States.B2); |
Guards are used to decide which transition to take if there are multiple transitions defined for a single event on a state. Guards can use the event argument that was passed to the Fire
method of the state machine. The first transition with a guard that returns true
is taken.
The signature of guards is as follows:
1
2
3
|
bool Guard<T>(T argument) // to get access to the argument passed in Fire bool Guard() // for guards that do not need access to the parameters passed to Fire |
Entry and Exit Actions
1
2
3
|
fsm.In(States.A) .ExecuteOnEntry(() => { /* execute entry action stuff */ } .ExecuteOnExit(() => { /* execute exit action stuff */ }; |
When a transition is executed, the exit action of the current state is executed first. Then the transition action is executed. Finally, the entry action of the new current state is executed.
The signature of entry and exit actions are as follows:
1
|
void EntryOrExitAction() |
Internal and Self Transitions
Internal and Self transitions are transitions from a state to itself.
When an internal transition is performed then the state is not exited, i.e. no exit or entry action is performed. When an self transition is performed then the state is exited and re-entered, i.e. exit and entry actions, if any, are performed.
1
2
3
|
fsm.In(States.A) .On(Events.Self).Goto(States.A) // self transition .On(Events.Internal) // internal transition |
Define Hierarchies
The following sample defines that B1
, B2
and B3
are sub states of state B
. B1
is defined to be the initial sub state of state B
.
1
2
3
4
5
|
fsm.DefineHierarchyOn(States.B) .WithHistoryType(HistoryType.None) .WithInitialSubState(States.B1) .WithSubState(States.B2) .WithSubState(States.B3); |
History Types
When defining hierarchies then you can define which history type is used when a state is re-entered:
- None:
The state enters into its initial sub state. The sub
state itself enters its initial sub state and so on until the innermost
nested state is reached. - Deep:
The state enters into its last active sub state. The sub
state itself enters into its last active state and so on until the
innermost nested state is reached. - Shallow:
The state enters into its last active sub state. The
sub state itself enters its initial sub state and so on until the
innermost nested state is reached.
Initialize, Start and Stop State Machine
Once you have defined your state machine then you can start using it.
First you have to initialize the state machine to set the first state (A
in the sample):
1
|
fsm.Initialize(States.A); |
Afterward, you start the state machine:
1
|
fsm.Start(); |
Events are processed only if the state machine is started. However, you
can queue up events before starting the state machine. As soon as you
start the state machine, it will start performing the events.
To suspend event processing, you can stop the state machine:
1
|
fsm.Stop(); |
If you want, you can then start the state machine again, then stop it, start again and so on.
Fire Events
To get the state machine to do its work, you send events to it:
1
|
fsm.Fire(Events.B); |
This fires the event B
on the state machine and it will perform the corresponding transition for this event on its current state.
You can also pass an argument to the state machine that can be used by transition actions and guards:
1
|
fsm.Fire(Events.B, anArgument); |
Another possibility is to send a priority event:
1
|
fsm.FirePriority(Events.B); |
In this case, the event B
is enqueued in front of all
queued events. This is especially helpful in error scenarios to go to
the error state immediately without performing any other already queued
events first.
That's it for the tutorial. See rest of documentation for more details on specific topics.
Sample State Machine
This is a sample state machine.
Definition
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
var elevator = new PassiveStateMachine<States, Events>( "Elevator" ); elevator.DefineHierarchyOn(States.Healthy) .WithHistoryType(HistoryType.Deep) .WithInitialSubState(States.OnFloor) .WithSubState(States.Moving); elevator.DefineHierarchyOn(States.Moving) .WithHistoryType(HistoryType.Shallow) .WithInitialSubState(States.MovingUp) .WithSubState(States.MovingDown); elevator.DefineHierarchyOn(States.OnFloor) .WithHistoryType(HistoryType.None) .WithInitialSubState(States.DoorClosed) .WithSubState(States.DoorOpen); elevator.In(States.Healthy) .On(Events.ErrorOccured).Goto(States.Error); elevator.In(States.Error) .On(Events.Reset).Goto(States.Healthy) .On(Events.ErrorOccured); elevator.In(States.OnFloor) .ExecuteOnEntry( this .AnnounceFloor) .ExecuteOnExit(Beep) .ExecuteOnExit(Beep) // just beep a second time .On(Events.CloseDoor).Goto(States.DoorClosed) .On(Events.OpenDoor).Goto(States.DoorOpen) .On(Events.GoUp) .If(CheckOverload).Goto(States.MovingUp) .Otherwise().Execute( this .AnnounceOverload, Beep) .On(Events.GoDown) .If(CheckOverload).Goto(States.MovingDown) .Otherwise().Execute( this .AnnounceOverload); elevator.In(States.Moving) .On(Events.Stop).Goto(States.OnFloor); elevator.Initialize(States.OnFloor); |
The above state machine uses these actions and guards:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
private void AnnounceFloor() { /* announce floor number */ } private void AnnounceOverload() { /* announce overload */ } private void Beep() { /* beep */ } private bool CheckOverload() { return whetherElevatorHasOverload; } |
Run the State Machine
This is a small sample to show how to interact with the state machine:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
// queue some events to be performed when state machine is started. elevator.Fire(Events.ErrorOccured); elevator.Fire(Events.Reset); elevator.Start(); // these events are performed immediately elevator.Fire(Events.OpenDoor); elevator.Fire(Events.CloseDoor); elevator.Fire(Events.GoUp); elevator.Fire(Events.Stop); elevator.Fire(Events.OpenDoor); elevator.Stop(); |
Log
If you add the log4net log extensions available in the Appccelerate.SourceTemplate package:
1
|
elevator.AddExtension( new Appccelerate.Log4Net.StateMachineLogExtension<States, Events>( "Elevator" )); |
to the above code then these are the log messages (if all are enabled - see log4net documentation on how to configure log messages). Note how the state exits and enters are logged, especially for hierarchical transitions.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
Logger Level Message Elevator INFO State machine Elevator initializes to state OnFloor. Elevator INFO State machine Elevator switched from state to state DoorClosed. Elevator DEBUG State machine Elevator performed -> Enter Healthy -> Enter OnFloor -> Enter DoorClosed. Elevator INFO Fire event ErrorOccured on state machine Elevator with current state DoorClosed and event arguments . Elevator INFO State machine Elevator switched from state DoorClosed to state Error. Elevator DEBUG State machine Elevator performed -> Exit DoorClosed -> Exit OnFloor -> Exit Healthy -> Enter Error. Elevator INFO Fire event Reset on state machine Elevator with current state Error and event arguments . Elevator INFO State machine Elevator switched from state Error to state DoorClosed. Elevator DEBUG State machine Elevator performed -> Exit Error -> Enter Healthy -> Enter OnFloor -> Enter DoorClosed. Elevator INFO Fire event OpenDoor on state machine Elevator with current state DoorClosed and event arguments . Elevator INFO State machine Elevator switched from state DoorClosed to state DoorOpen. Elevator DEBUG State machine Elevator performed -> Exit DoorClosed -> Enter DoorOpen. Elevator INFO Fire event CloseDoor on state machine Elevator with current state DoorOpen and event arguments . Elevator INFO State machine Elevator switched from state DoorOpen to state DoorClosed. Elevator DEBUG State machine Elevator performed -> Exit DoorOpen -> Enter DoorClosed. Elevator INFO Fire event GoUp on state machine Elevator with current state DoorClosed and event arguments . Elevator INFO State machine Elevator switched from state DoorClosed to state MovingUp. Elevator DEBUG State machine Elevator performed -> Exit DoorClosed -> Exit OnFloor -> Enter Moving -> Enter MovingUp. Elevator INFO Fire event Stop on state machine Elevator with current state MovingUp and event arguments . Elevator INFO State machine Elevator switched from state MovingUp to state DoorClosed. Elevator DEBUG State machine Elevator performed -> Exit MovingUp -> Exit Moving -> Enter OnFloor -> Enter DoorClosed. Elevator INFO Fire event OpenDoor on state machine Elevator with current state DoorClosed and event arguments . Elevator INFO State machine Elevator switched from state DoorClosed to state DoorOpen. Elevator DEBUG State machine Elevator performed -> Exit DoorClosed -> Enter DoorOpen. |
You can write your own extension for different logging.
Reports
yEd Report
csv Report
Source | Entry | Exit | Children |
OnFloor | AnnounceFloor | Beep, Beep | DoorClosed, DoorOpen |
Moving | MovingUp, MovingDown | ||
Healthy | OnFloor, Moving | ||
MovingUp | |||
MovingDown | |||
DoorClosed | |||
DoorOpen | |||
Error |
Source | Event | Guard | Target | Actions |
OnFloor | CloseDoor | DoorClosed | ||
OnFloor | OpenDoor | DoorOpen | ||
OnFloor | GoUp | CheckOverload | MovingUp | |
OnFloor | GoUp | internal transition | AnnounceOverload, Beep | |
OnFloor | GoDown | CheckOverload | MovingDown | |
OnFloor | GoDown | internal transition | AnnounceOverload | |
Moving | Stop | OnFloor | ||
Healthy | ErrorOccured | Error | ||
Error | Reset | Healthy | ||
Error | ErrorOccured | internal transition |
Textual Report
Elevator: initial state = OnFloor
Healthy: initial state = OnFloor history type = Deep
entry action:
exit action:
ErrorOccured -> Error actions: guard:
OnFloor: initial state = DoorClosed history type = None
entry action: AnnounceFloor
exit action: Beep, Beep
CloseDoor -> DoorClosed actions: guard:
OpenDoor -> DoorOpen actions: guard:
GoUp -> MovingUp actions: guard: CheckOverload
GoUp -> internal actions: AnnounceOverload, Beep guard:
GoDown -> MovingDown actions: guard: CheckOverload
GoDown -> internal actions: AnnounceOverload guard:
DoorClosed: initial state = None history type = None
entry action:
exit action:
DoorOpen: initial state = None history type = None
entry action:
exit action:
Moving: initial state = MovingUp history type = Shallow
entry action:
exit action:
Stop -> OnFloor actions: guard:
MovingUp: initial state = None history type = None
entry action:
exit action:
MovingDown: initial state = None history type = None
entry action:
exit action:
Error: initial state = None history type = None
entry action:
exit action:
Reset -> Healthy actions: guard:
ErrorOccured -> internal actions: guard:
StateMachine的更多相关文章
- Quick StateMachine状态机
状态机quick中是一个亮点,假设我们做一款RPG游戏,一个角色通常会拥有idle,attack,walk.run,death这些状态,假设游戏角色的状态採用分支条件推断的话.会造成很庞大而难以维护. ...
- mina statemachine解读(二)
这里主要讲下对外接口暴露的处理. // 创建对外接口对象 TaskWork taskWork = new StateMachineProxyBuilder().setStateContextLooku ...
- mina statemachine解读(一)
statemachine(状态机)在维护多状态数据时有非常好的作用,现在github上star排名最前的是squirrel-foundation以及spring-statemachine,而min ...
- Copycat - StateMachine
看下用户注册StateMachine的过程, CopycatServer.Builder builder = CopycatServer.builder(address); builder.withS ...
- Spring Boot 揭秘与实战(七) 实用技术篇 - StateMachine 状态机机制
文章目录 1. 环境依赖 2. 状态和事件 2.1. 状态枚举 2.2. 事件枚举 3. 状态机配置4. 状态监听器 3.1. 初始化状态机状态 3.2. 初始化状态迁移事件 5. 总结 6. 源代码 ...
- Spring Boot - StateMachine状态机
是Spring Boot提供的状态机的现成实现. 理论(有点像工作流) 需要定义一些状态的枚举,以及一些引起状态变化的事件的枚举. 每个状态可以对应的创建一个继承自org.springframewor ...
- quick 状态机StateMachine
function Player:addStateMachine() self.fsm_ = {} cc.GameObject.extend(self.fsm_) :addComponent(" ...
- Android stateMachine分析
StateMachine与State模式的详细介绍可以参考文章:Android学习 StateMachine与State模式 下面是我对于StateMachine的理解: 先了解下消息处理.看下Sta ...
- stateMachine 相关知识
一个state的基本构造,processMessage 以及可选的enter exit 和getName. processMessager是用于处理数据. enter 和exit 则是类似于 面向编程 ...
- Spring Boot 2.x实战之StateMachine
本文首发于个人网站:Spring Boot 2.x实战之StateMachine Spring StateMachine是一个状态机框架,在Spring框架项目中,开发者可以通过简单的配置就能获得一个 ...
随机推荐
- microsoft Ebook
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-techno ...
- [机器学习之13]降维技术——主成分分析PCA
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算 ...
- Phython 学习笔记之——类的初步认识
类是面向对象编程的核心,他扮演相关数据及逻辑容器的角色.他们提供了创建实例对象的蓝图.因为python语言不要求必须以面向对象的方式编程(与JAVA不同),这里简单的举一个例子. 如何定义一个类 cl ...
- svg如何用marker 定义一个黑色的小圆点
<defs> <marker id="markerStartArrow" viewBox="0 0 30 30" refX="10& ...
- python_Day3[set集合,函数,全局变量之篇]
一.set集合 1.Set集合特点:无序.不重复,可嵌套 2.set集合创建规则:set = {"123","234"} 字典创建规则:dic = {“Key” ...
- Android Studio--学习系列(1)
<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="ht ...
- Android中实现java与PHP服务器(基于新浪云免费云平台)http通信详解
Android中实现java与PHP服务器(基于新浪云免费云平台)http通信详解 (本文转自: http://blog.csdn.net/yinhaide/article/details/44756 ...
- 如何利用gatling创建一个性能测试例
[原创博文,转载请声明出处] 基于上一篇博文介绍如何源码编译创建自己的gatling可执行工具,今天介绍一下如何基于gatling做性能测试! 由于gatling的测试例脚本是基于scala写的,所以 ...
- 在阿里云 centos 6.3上面安装php5.2(转)
由于php程序使用了Zend Optimizer,只能使用php5.2, yum 上的php 是5.3的版本,只能重新安装php:安装步骤如下: 先卸载 php5.3的相关东西: yum remove ...
- SPOJ #5 The Next Palindrome
"not more than 1000000 digits" means an efficient in-place solution is needed. My first so ...