poj3525Most Distant Point from the Sea(半平面交)
求凸多边形内一点距离边最远。
做法:二分+半平面交判定。
二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核。
本想自己写一个向内推进。。仔细一看发现自己的平面交模板上自带。。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
const int MAXN=;
int m;
double r;
int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y){}
};
point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点
void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void initial()
{
for(int i = ; i <= m; ++i)p[i] = points[i];
p[m+] = p[];
p[] = p[m];
cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数
}
point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b ,double c)
{
curCnt = ;
for(int i = ; i <= cCnt; ++i)
{
if(a*p[i].x + b*p[i].y + c >= )q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在,
//故应该接着判断
else
{
if(a*p[i-].x + b*p[i-].y + c > ) //如果p[i-1]在直线的右侧的话,
{
//则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少)
q[++curCnt] = intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x + b*p[i+].y + c > ) //原理同上
{
q[++curCnt] = intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i = ; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中
p[curCnt+] = q[];
p[] = p[curCnt];
cCnt = curCnt;
}
int solve(double r)
{
//注意:默认点是顺时针,如果题目不是顺时针,规整化方向
initial();
// for(int i = 1; i <= m; ++i)
// {
// double a,b,c;
// getline(points[i],points[i+1],a,b,c);
// cut(a,b,c);
// } //如果要向内推进r,用该部分代替上个函数
for(int i = ; i <= m; ++i){
point ta, tb, tt;
tt.x = points[i+].y - points[i].y;
tt.y = points[i].x - points[i+].x;
double k = r / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i+].x + tt.x;
tb.y = points[i+].y + tt.y;
double a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
//多边形核的面积
// double area = 0;
// for(int i = 1; i <= curCnt; ++i)
// area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y;
// area = fabs(area / 2.0);
// printf("%.2f\n",area);
if(curCnt) return ;
return ; }
void GuiZhengHua(){
//规整化方向,逆时针变顺时针,顺时针变逆时针
for(int i = ; i < (m+)/; i ++)
swap(points[i], points[m-i]);
}
//void change(double d)
//{
// int i;
// for(i = 1; i <= m ;i++)
// {
// double len = dis(p[i],points[i+1]);
// double a = points[i+1].y-points[i].y;
// double b = points[i].x-points[i+1].x;
// double cos = a/len;
// double sin = b/len;
// points[i] = point(points[i].x+cos*d,points[i].y+sin*d);
// points[i+1] = point(points[i+1].x+cos*d,points[i+1].y+sin*d);
// }
//}
int main()
{
int i;
while(scanf("%d",&m)&&m)
{
for(i = ; i<=m; i++)
scanf("%lf%lf",&points[i].x,&points[i].y);
GuiZhengHua();
points[m+] = points[];
double rig = INF,lef = ,mid;
while(rig-lef>eps)
{
mid = (rig+lef)/2.0;
//change(mid);
if(solve(mid))
lef = mid;
else rig = mid;
}
printf("%.6f\n",lef);
}
return ;
}
poj3525Most Distant Point from the Sea(半平面交)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- POJ3525-Most Distant Point from the Sea(二分+半平面交)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3955 ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...
- 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
随机推荐
- 9、Http回顾/Servlet
1 Http回顾 Http协议: 1)http协议: 对浏览器客户端和服务器端之间数据传输的格式规范. 2)http请求:浏览器->服务器端 格式: 请求行(请求方式(GET/POST) 请求资 ...
- JavaEE基础(十四) /正则
1.常见对象(正则表达式的概述和简单使用) A:正则表达式 是指一个用来描述或者匹配一系列符合某个语法规则的字符串的单个字符串.其实就是一种规则.有自己特殊的应用. 作用:比如注册邮箱,邮箱有用户名和 ...
- Oracle触发器使用介绍
触发器,函数,包都是可以再生利用的东西,所以在创建的时候都要用到create or replace这个万能语句,接着就是主角trigger的出现了,主角出现还需要一点点波动,通常大人物都不是随随便便就 ...
- 20145227《Java程序设计》第10周学习总结
20145227<Java程序设计>第10周学习总结 教材学习内容总结 网络编程 就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收 ...
- Serializable接口使用纪实
这两天依领导要求使用sonar工具测试了一下项目代码,其中有一个问题是 而这个类的结构大概是这样的: public class Demo<T> implements Serializabl ...
- USB wifi调试笔记
本文以realtek 8192CU WiFi模块为例,介绍USB wifi在Jelly Bean 4.1的调试笔记. 1.WIFI打不开现象概述 WiFi打不开是指您在UI的settings下选中Wi ...
- springMVC配置freemarker
这里呢,我首先来说明一下写该篇的目的. 我最近要用到freemarker因此研究了一下这个东西. 先来说说如何配置吧. 1.jar包.地址见下链接. http://pan.baidu.com/s/1j ...
- 【转】【调试技巧】Linux环境下段错误的产生原因及调试方法小结
本文转自:http://www.cnblogs.com/panfeng412/archive/2011/11/06/segmentation-fault-in-linux.html 1. 段错误是什么 ...
- Linux内存模型
http://blog.csdn.net/sunyubo458/article/details/6090946 了解linux的内存模型,或许不能让你大幅度提高编程能力,但是作为一个基本知识点应该熟悉 ...
- Uva 11400,照明系统设计
题目链接:https://uva.onlinejudge.org/external/114/11400.pdf 题意:有一个照明系统需要用到n种灯,每种灯的电压为V,电源费用K,每个灯泡费用为C,需要 ...