链接

求凸多边形内一点距离边最远。

做法:二分+半平面交判定。

二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核。

本想自己写一个向内推进。。仔细一看发现自己的平面交模板上自带。。

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
const int MAXN=;
int m;
double r;
int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y){}
};
point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点
void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void initial()
{
for(int i = ; i <= m; ++i)p[i] = points[i];
p[m+] = p[];
p[] = p[m];
cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数
}
point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b ,double c)
{
curCnt = ;
for(int i = ; i <= cCnt; ++i)
{
if(a*p[i].x + b*p[i].y + c >= )q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在,
//故应该接着判断
else
{
if(a*p[i-].x + b*p[i-].y + c > ) //如果p[i-1]在直线的右侧的话,
{
//则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少)
q[++curCnt] = intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x + b*p[i+].y + c > ) //原理同上
{
q[++curCnt] = intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i = ; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中
p[curCnt+] = q[];
p[] = p[curCnt];
cCnt = curCnt;
}
int solve(double r)
{
//注意:默认点是顺时针,如果题目不是顺时针,规整化方向
initial();
// for(int i = 1; i <= m; ++i)
// {
// double a,b,c;
// getline(points[i],points[i+1],a,b,c);
// cut(a,b,c);
// } //如果要向内推进r,用该部分代替上个函数
for(int i = ; i <= m; ++i){
point ta, tb, tt;
tt.x = points[i+].y - points[i].y;
tt.y = points[i].x - points[i+].x;
double k = r / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i+].x + tt.x;
tb.y = points[i+].y + tt.y;
double a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
//多边形核的面积
// double area = 0;
// for(int i = 1; i <= curCnt; ++i)
// area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y;
// area = fabs(area / 2.0);
// printf("%.2f\n",area);
if(curCnt) return ;
return ; }
void GuiZhengHua(){
//规整化方向,逆时针变顺时针,顺时针变逆时针
for(int i = ; i < (m+)/; i ++)
swap(points[i], points[m-i]);
}
//void change(double d)
//{
// int i;
// for(i = 1; i <= m ;i++)
// {
// double len = dis(p[i],points[i+1]);
// double a = points[i+1].y-points[i].y;
// double b = points[i].x-points[i+1].x;
// double cos = a/len;
// double sin = b/len;
// points[i] = point(points[i].x+cos*d,points[i].y+sin*d);
// points[i+1] = point(points[i+1].x+cos*d,points[i+1].y+sin*d);
// }
//}
int main()
{
int i;
while(scanf("%d",&m)&&m)
{
for(i = ; i<=m; i++)
scanf("%lf%lf",&points[i].x,&points[i].y);
GuiZhengHua();
points[m+] = points[];
double rig = INF,lef = ,mid;
while(rig-lef>eps)
{
mid = (rig+lef)/2.0;
//change(mid);
if(solve(mid))
lef = mid;
else rig = mid;
}
printf("%.6f\n",lef);
}
return ;
}

poj3525Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  5. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  7. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  8. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  9. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

随机推荐

  1. 5、XML(1)

    1 XML入门 1.1 引入 HTML: 负责网页的结构 CSS: 负责网页的样式(美观) Javascript: 负责在浏览器端与用户进行交互. 负责静态的网页制作的语言 HTML语言特点: 1)由 ...

  2. 嵌入式jetty的HTTP实现

    2    嵌入式jetty的HTTP实现 布拉君君 2.1 简单HTTP实现 2.1.1 HTTP SERVER端实现 2.1.1.1 HTTP SERVER端实现概述 在代码中嵌入一个Jetty s ...

  3. discuz模板文件列表

    template/default/common模板公共文件夹,全局相关     |--block_forumtree.htm 树形论坛版块分支js文件     |--block_thread.htm特 ...

  4. js中字符串转换为数字的方法

    parseInt; parseFload; +; parseInt() 和 parseFloat() 函数会尝试逐个解析字符串中的字符,直到遇上一个无法被解析成数字的字符,然后返回该字符前所有数字字符 ...

  5. 计算机学院大学生程序设计竞赛(2015’12)Polygon

    Polygon Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  6. 2016年省赛G题, Parenthesis

    Problem G: Parenthesis Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 398  Solved: 75[Submit][Status ...

  7. MSSQL删除字段时出现 服务器: 消息 5074,级别 16,状态 1,行 1 的解决办法

    有的朋友在做用户维护字段的界面时,肯定发现一个问题,当用脚本:ALTER TABLE 表名 DROP COLUMN 字段名进行删除字段的操作时,会出现“服务器: 消息 5074,级别 16,状态 1, ...

  8. Mysql-学习笔记(==》插入修改数据二)

    USE db; -- 建立学生信息表CREATE TABLE student( sno INT UNSIGNED NOT NULL AUTO_INCREMENT, sname VARCHAR(20) ...

  9. 使用 JavaScript

    我们要用 JavaScript,但是把它写在哪里呢?   这里 ↘   1. HTML 页面中 .   2. 单独的一个文件中,文件后缀名是“.js”.     ——————————————————— ...

  10. php 日期时间操作-可算出几天后的时间

    本文为大家介绍一下根据PHP时间戳获取当前时期的具体方式.strtotime能将任何英文文本的日期时间描述解析为Unix时间戳,我们结合mktime()或date()格式化日期时间获取指定的时间戳,实 ...