KM算法详解+模板
http://www.cnblogs.com/wenruo/p/5264235.html
KM算法用来求二分图最大权完美匹配。
本文配合该博文服用更佳:趣写算法系列之--匈牙利算法
本文没有给出KM算法的原理,只是模拟了一遍算法的过程。另,博主水平较差,发现问题欢迎指出,谢谢!!!!
现在有N男N女,有些男生和女生之间互相有好感,我们将其好感程度定义为好感度,我们希望把他们两两配对,并且最后希望好感度和最大。
怎么选择最优的配对方法呢?
首先,每个女生会有一个期望值,就是与她有好感度的男生中最大的好感度。男生呢,期望值为0,就是……只要有一个妹子就可以啦,不挑~~
这样,我们把每个人的期望值标出来。
接下来,开始配对。
配对方法:
我们从第一个女生开始,分别为每一个女生找对象。
每次都从第一个男生开始,选择一个男生,使男女两人的期望和要等于两人之间的好感度。
注意:每一轮匹配,每个男生只会被尝试匹配一次!
具体匹配过程:
==============为女1找对象===============
(此时无人配对成功)
根据 “男女两人的期望和要等于两人之间的好感度”的规则
女1-男1:4+0 != 3
女1-男3:4+0 == 4
所以女1选择了男3
女1找对象成功
==============为女1找对象成功============
==============为女2找对象===============
(此时女1—男3)
根据配对原则,女2选择男3
男3有主女1,女1尝试换人
我们尝试让女1去找别人
尝试失败
为女2找对象失败!
==============为女2找对象失败============
这一轮参与匹配的人有:女1,女2,男3。
怎么办???很容易想到的,这两个女生只能降低一下期望值了,降低多少呢?
任意一个参与匹配女生能换到任意一个这轮没有被选择过的男生所需要降低的最小值
比如:女1选择男1,期望值要降低1。 女2选择男1,期望值要降低1。 女2选择男2,期望值要降低2。
于是,只要期望值降低1,就有妹子可能选择其他人。所以妹子们的期望值要降低1点。
同时,刚才被抢的男生此时非常得意,因为有妹子来抢他,于是他的期望值提高了1点(就是同妹子们降低的期望值相同)。
于是期望值变成这样(当然,不参与刚才匹配过程的人期望值不变)
==============继续为女2找对象=============
(此时女1—男3)
女2选择了男1
男1还没有被配对
女2找对象成功!
==============为女2找对象成功=============
==============为女3找对象===============
(此时女1—男3,女2-男1)
女3没有可以配对的男生……
女3找对象失败
==============为女3找对象失败============
此轮只有女3参与匹配
此时应该为女3降低期望值
降低期望值1的时候,女3-男3可以配对,所以女3降低期望值1
==============继续为女3找对象============
(此时女1—男3, 女2-男1)
女3相中了男3
此时男3已经有主女1,于是女1尝试换人
女1选择男1
而男1也已经有主女2,女2尝试换人
前面说过,每一轮匹配每个男生只被匹配一次
所以女2换人失败
女3找对象再次失败
==============为女3找对象失败============
这一轮匹配相关人员:女1,女2,女3,男1,男3
此时,只要女2降低1点期望值,就能换到男2
(前面提过 只要任意一个女生能换到任意一个没有被选择过的男生所需要降低的最小值)
我们把相应人员期望值改变一下
==============还是为女3找对象============
(此时女1—男3, 女2-男1)
女3选择了男3
男3有主女1,女1尝试换人
女1换到了男1
男1已经有主女2,女2尝试换人
女2换人男2
男2无主,匹配成功!!!
==============为女3找对象成功=============
匹配成功!!!撒花~~
到此匹配全部结束
此时
女1-男1,女2-男2,女3-男3
好感度和为最大:9
虽然不停换人的过程听起来很麻烦,但其实整个是个递归的过程,实现起来比较简单。比较复杂的部分就是期望值的改变,但是可以在递归匹配的过程中顺带求出来。
模板(带详细注释)(入门题:HDU2255(复杂度应该是O(N^3)
#include <iostream>
#include <cstring>
#include <cstdio> using namespace std;
const int MAXN = ;
const int INF = 0x3f3f3f3f; int love[MAXN][MAXN]; // 记录每个妹子和每个男生的好感度
int ex_girl[MAXN]; // 每个妹子的期望值
int ex_boy[MAXN]; // 每个男生的期望值
bool vis_girl[MAXN]; // 记录每一轮匹配匹配过的女生
bool vis_boy[MAXN]; // 记录每一轮匹配匹配过的男生
int match[MAXN]; // 记录每个男生匹配到的妹子 如果没有则为-1
int slack[MAXN]; // 记录每个汉子如果能被妹子倾心最少还需要多少期望值 int N; bool dfs(int girl)
{
vis_girl[girl] = true; for (int boy = ; boy < N; ++boy) { if (vis_boy[boy]) continue; // 每一轮匹配 每个男生只尝试一次 int gap = ex_girl[girl] + ex_boy[boy] - love[girl][boy]; if (gap == ) { // 如果符合要求
vis_boy[boy] = true;
if (match[boy] == - || dfs( match[boy] )) { // 找到一个没有匹配的男生 或者该男生的妹子可以找到其他人
match[boy] = girl;
return true;
}
} else {
slack[boy] = min(slack[boy], gap); // slack 可以理解为该男生要得到女生的倾心 还需多少期望值 取最小值 备胎的样子【捂脸
}
} return false;
} int KM()
{
memset(match, -, sizeof match); // 初始每个男生都没有匹配的女生
memset(ex_boy, , sizeof ex_boy); // 初始每个男生的期望值为0 // 每个女生的初始期望值是与她相连的男生最大的好感度
for (int i = ; i < N; ++i) {
ex_girl[i] = love[i][];
for (int j = ; j < N; ++j) {
ex_girl[i] = max(ex_girl[i], love[i][j]);
}
} // 尝试为每一个女生解决归宿问题
for (int i = ; i < N; ++i) { fill(slack, slack + N, INF); // 因为要取最小值 初始化为无穷大 while () {
// 为每个女生解决归宿问题的方法是 :如果找不到就降低期望值,直到找到为止 // 记录每轮匹配中男生女生是否被尝试匹配过
memset(vis_girl, false, sizeof vis_girl);
memset(vis_boy, false, sizeof vis_boy); if (dfs(i)) break; // 找到归宿 退出 // 如果不能找到 就降低期望值
// 最小可降低的期望值
int d = INF;
for (int j = ; j < N; ++j)
if (!vis_boy[j]) d = min(d, slack[j]); for (int j = ; j < N; ++j) {
// 所有访问过的女生降低期望值
if (vis_girl[j]) ex_girl[j] -= d; // 所有访问过的男生增加期望值
if (vis_boy[j]) ex_boy[j] += d;
// 没有访问过的boy 因为girl们的期望值降低,距离得到女生倾心又进了一步!
else slack[j] -= d;
}
}
} // 匹配完成 求出所有配对的好感度的和
int res = ;
for (int i = ; i < N; ++i)
res += love[ match[i] ][i]; return res;
} int main()
{
while (~scanf("%d", &N)) { for (int i = ; i < N; ++i)
for (int j = ; j < N; ++j)
scanf("%d", &love[i][j]); printf("%d\n", KM());
}
return ;
}
KM算法详解+模板的更多相关文章
- KM算法 详解+模板
先说KM算法求二分图的最佳匹配思想,再详讲KM的实现.[KM算法求二分图的最佳匹配思想] 对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , x ...
- KM算法详解[转]
KM算法详解 原帖链接:http://www.cnblogs.com/zpfbuaa/p/7218607.html#_label0 阅读目录 二分图博客推荐 匈牙利算法步骤 匈牙利算法博客推荐 KM算 ...
- 【原创】我的KM算法详解
0.二分图 二分图的概念 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V, E)是一个无向图.如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y ...
- manacher算法 详解+模板
manacher算法可以解决字符串的回文子串长度问题. 个人感觉szy学长讲的非常好,讲过之后基本上就理解了. 那就讲一下个人的理解.(参考了szy学长的ppt) 如果一个回文子串的长度是偶数,对称轴 ...
- manacher算法详解+模板 P3805
前言: 记住manacher是一个很简单的算法. 首先我们来了解一下回文字串的定义:若一个字符串中的某一子串满足回文的性质,则称其是回文子串.(注意子串必须是连续的,而子序列是可以不连续的) 那么若给 ...
- KMP算法 详解+模板
本文大部分摘自szy学长的ppt<string>中的KMP部分. %%%膜拜szy大神orz 1.概述 KMP 算法是用来解决单模匹配问题的一种算法. 如果暴力的进行单模匹配,那么时间复杂 ...
- KMP算法详解&&P3375 【模板】KMP字符串匹配题解
KMP算法详解: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt(雾)提出的. 对于字符串匹配问题(such as 问你在abababb中有多少个 ...
- 高斯消元法(Gauss Elimination)【超详解&模板】
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
随机推荐
- Linux和Windows的换行符
一直对换行符这个东西概念比较模糊,直到最近花了一点时间仔细研究了一下,才彻底搞清楚这个问题,本文前面介绍部分是外文转载,后面例子是个人总结,希望能对大家有一些帮助. 回车符号和换行符号产生背景 关于“ ...
- URAL1355. Bald Spot Revisited
1355 其实就是求质因子的个数 这样肯定是最多的 注意一下 除到最后不是1的情况 #include <iostream> #include<cstdio> #include& ...
- bzoj4627: [BeiJing2016]回转寿司
权值线段树. 要求 L<=(s[i]-s[j])<=R (i<j). 的i和j的数量. 所以把前缀和s加入一棵权值线段树,每次询问满足条件的范围中的权值的个数. 权值线段树不能像普 ...
- Qt之QHeaderView自定义排序(获取正确的QModelIndex)
简述 前几节中分享过关于自定义排序的功能,貌似我们之前的内容已经可以很好地解决排序问题了,但是,会由此引发一些很难发现的问题...比如:获取QModelIndex索引错误. 下面,我们先来实现一个整行 ...
- 51nod1244 莫比乌斯函数之和
推公式.f[n]=1-∑f[n/i](i=2...n).然后递归+记忆化搜索.yyl说这叫杜教筛?时间复杂度貌似是O(n 2/3)的? #include<cstdio> #include& ...
- 【第六篇】javascript显示当前的时间(年月日 时分秒 星期)
不多说自己上代码 这是我开始学javascript写的,现在发出来 <span id="clock" ></span> function time() { ...
- Context上下文对象(抄书的)
Servlet上下文 ServletContext 上下文接口 ServletContext接口 每一个应用都有唯一的一个上下文对象,即为ServletContext对象 Servl ...
- HDU 1548 A strange lift 奇怪的电梯(BFS,水)
题意: 有一座电梯,其中楼层从1-n,每层都有一个数字k,当处于某一层时,只能往上走k层,或者下走k层.楼主在a层,问是否能到达第b层? 思路: 在起点时只能往上走和往下走两个选择,之后的每层都是这样 ...
- wxWidgets简单的多线程
#include <wx/wx.h> #include <wx/thread.h> #include <wx/event.h> #include <wx/pr ...
- 最冤枉的关键字----sizeof
<h4>一.常年被人误认为函数.</h4> sizeof 是关键字不是函数,其实就算不知道它是否为32 个关键字之一时,我们也可以借助编译器确定它的身份.看下面的例子: int ...