wav文件格式分析详解

文章转载自:http://blog.csdn.net/BlueSoal/article/details/932395

一、综述
    WAVE文件作为多媒体中使用的声波文件格式之一,它是以RIFF格式为标准的。
RIFF是英文Resource Interchange File Format的缩写,每个WAVE文件的头四个
字节便是“RIFF”。
    WAVE文件是由若干个Chunk组成的。按照在文件中的出现位置包括:RIFF WAVE
Chunk, Format Chunk, Fact Chunk(可选), Data Chunk。具体见下图:

------------------------------------------------
|             RIFF WAVE Chunk                  |
|             ID  = 'RIFF'                     |
|             RiffType = 'WAVE'                |
------------------------------------------------
|             Format Chunk                     |
|             ID = 'fmt '                      |
------------------------------------------------
|             Fact Chunk(optional)             |
|             ID = 'fact'                      |
------------------------------------------------
|             Data Chunk                       |
|             ID = 'data'                      |
------------------------------------------------
            图1   Wav格式包含Chunk示例

其中除了Fact Chunk外,其他三个Chunk是必须的。每个Chunk有各自的ID,位
于Chunk最开始位置,作为标示,而且均为4个字节。并且紧跟在ID后面的是Chunk大
小(去除ID和Size所占的字节数后剩下的其他字节数目),4个字节表示,低字节
表示数值低位,高字节表示数值高位。下面具体介绍各个Chunk内容。
PS:
    所有数值表示均为低字节表示低位,高字节表示高位。

二、具体介绍
RIFF WAVE Chunk
    ==================================
    |       |所占字节数|  具体内容   |
    ==================================
    | ID    |  4 Bytes |   'RIFF'    |
    ----------------------------------
    | Size  |  4 Bytes |             |
    ----------------------------------
    | Type  |  4 Bytes |   'WAVE'    |
    ----------------------------------
            图2  RIFF WAVE Chunk

以'FIFF'作为标示,然后紧跟着为size字段,该size是整个wav文件大小减去ID
和Size所占用的字节数,即FileLen - 8 = Size。然后是Type字段,为'WAVE',表
示是wav文件。
    结构定义如下:
 struct RIFF_HEADER
 {
  char szRiffID[4];  // 'R','I','F','F'
  DWORD dwRiffSize;
  char szRiffFormat[4]; // 'W','A','V','E'
 };

Format Chunk
    ====================================================================
    |               |   字节数  |              具体内容                |
    ====================================================================
    | ID            |  4 Bytes  |   'fmt '                             |
    --------------------------------------------------------------------
    | Size          |  4 Bytes  | 数值为16或18,18则最后又附加信息     |
    --------------------------------------------------------------------  ----
    | FormatTag     |  2 Bytes  | 编码方式,一般为0x0001               |     |
    --------------------------------------------------------------------     |
    | Channels      |  2 Bytes  | 声道数目,1--单声道;2--双声道       |     |
    --------------------------------------------------------------------     |
    | SamplesPerSec |  4 Bytes  | 采样频率                             |     |
    --------------------------------------------------------------------     |
    | AvgBytesPerSec|  4 Bytes  | 每秒所需字节数                       |     |===> WAVE_FORMAT
    --------------------------------------------------------------------     |
    | BlockAlign    |  2 Bytes  | 数据块对齐单位(每个采样需要的字节数) |     |
    --------------------------------------------------------------------     |
    | BitsPerSample |  2 Bytes  | 每个采样需要的bit数                  |     |
    --------------------------------------------------------------------     |
    |               |  2 Bytes  | 附加信息(可选,通过Size来判断有无) |     |
    --------------------------------------------------------------------  ----
                            图3  Format Chunk

以'fmt '作为标示。一般情况下Size为16,此时最后附加信息没有;如果为18
则最后多了2个字节的附加信息。主要由一些软件制成的wav格式中含有该2个字节的
附加信息。
    结构定义如下:
 struct WAVE_FORMAT
 {
  WORD wFormatTag;
  WORD wChannels;
  DWORD dwSamplesPerSec;
  DWORD dwAvgBytesPerSec;
  WORD wBlockAlign;
  WORD wBitsPerSample;
 };
 struct FMT_BLOCK
 {
  char  szFmtID[4]; // 'f','m','t',' '
  DWORD  dwFmtSize;
  WAVE_FORMAT wavFormat;
 };

Fact Chunk
    ==================================
    |       |所占字节数|  具体内容   |
    ==================================
    | ID    |  4 Bytes |   'fact'    |
    ----------------------------------
    | Size  |  4 Bytes |   数值为4   |
    ----------------------------------
    | data  |  4 Bytes |             |
    ----------------------------------
            图4  Fact Chunk

Fact Chunk是可选字段,一般当wav文件由某些软件转化而成,则包含该Chunk。
    结构定义如下:
 struct FACT_BLOCK
 {
  char  szFactID[4]; // 'f','a','c','t'
  DWORD  dwFactSize;
 };

Data Chunk
    ==================================
    |       |所占字节数|  具体内容   |
    ==================================
    | ID    |  4 Bytes |   'data'    |
    ----------------------------------
    | Size  |  4 Bytes |             |
    ----------------------------------
    | data  |          |             |
    ----------------------------------
             图5 Data Chunk

Data Chunk是真正保存wav数据的地方,以'data'作为该Chunk的标示。然后是
数据的大小。紧接着就是wav数据。根据Format Chunk中的声道数以及采样bit数,
wav数据的bit位置可以分成以下几种形式:
    ---------------------------------------------------------------------
    |   单声道  |    取样1    |    取样2    |    取样3    |    取样4    |
    |           |--------------------------------------------------------
    |  8bit量化 |    声道0    |    声道0    |    声道0    |    声道0    |
    ---------------------------------------------------------------------
    |   双声道  |          取样1            |           取样2           |
    |           |--------------------------------------------------------
    |  8bit量化 |  声道0(左)  |  声道1(右)  |  声道0(左)  |  声道1(右)  |
    ---------------------------------------------------------------------
    |           |          取样1            |           取样2           |
    |   单声道  |--------------------------------------------------------
    | 16bit量化 |    声道0    |  声道0      |    声道0    |  声道0      |
    |           | (低位字节)  | (高位字节)  | (低位字节)  | (高位字节)  |
    ---------------------------------------------------------------------
    |           |                         取样1                         |
    |   双声道  |--------------------------------------------------------
    | 16bit量化 |  声道0(左)  |  声道0(左)  |  声道1(右)  |  声道1(右)  |
    |           | (低位字节)  | (高位字节)  | (低位字节)  | (高位字节)  |
    ---------------------------------------------------------------------
                         图6 wav数据bit位置安排方式

Data Chunk头结构定义如下:
    struct DATA_BLOCK
 {
  char szDataID[4]; // 'd','a','t','a'
  DWORD dwDataSize;
 };

三、小结
    因此,根据上述结构定义以及格式介绍,很容易编写相应的wav格式解析代码。
这里具体的代码就不给出了。

四、参考资料
    1、李敏, 声频文件格式WAVE的转换, 电脑知识与技术(学术交流), 2005.
    2、http://www.codeguru.com/cpp/g-m/multimedia/audio/article.php/c8935__1/
    3、http://www.smth.org/pc/pcshowcom.php?cid=129276

wav文件格式分析详解的更多相关文章

  1. Memcache的使用和协议分析详解

    Memcache的使用和协议分析详解 作者:heiyeluren博客:http://blog.csdn.NET/heiyeshuwu时间:2006-11-12关键字:PHP Memcache Linu ...

  2. 线程组ThreadGroup分析详解 多线程中篇(三)

    线程组,顾名思义,就是线程的组,逻辑类似项目组,用于管理项目成员,线程组就是用来管理线程. 每个线程都会有一个线程组,如果没有设置将会有些默认的初始化设置 而在java中线程组则是使用类ThreadG ...

  3. HanLP中人名识别分析详解

    HanLP中人名识别分析详解 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: l ·名字识别的问题 #387 l ·机 ...

  4. GC日志分析详解

    点击返回上层目录 原创声明:作者:Arnold.zhao 博客园地址:https://www.cnblogs.com/zh94 GC日志分析详解 以ParallelGC为例,YoungGC日志解释如下 ...

  5. wav文件格式分析与详解

    WAV文件是在PC机平台上很常见的.最经典的多媒体音频文件,最早于1991年8月出现在Windows 3.1操作系统上,文件扩展名为WAV,是WaveFom的简写,也称为波形文件,可直接存储声音波形, ...

  6. 【转载】wav文件格式分析与详解

    WAV文件是在PC机平台上很常见的.最经典的多媒体音频文件,最早于1991年8月出现在Windows 3.1操作系统上,文件扩展名为WAV,是WaveFom的简写,也称为波形文件,可直接存储声音波形, ...

  7. HashMap实现原理分析(详解)

    1. HashMap的数据结构 http://blog.csdn.net/gaopu12345/article/details/50831631   ??看一下 数据结构中有数组和链表来实现对数据的存 ...

  8. WAV文件格式分析

    一. RIFF概念 在Windows环境下,大部分的多媒体文件都依循着一种结构来存放信息,这样的结构称为"资源互换文件格式"(Resources lnterchange File ...

  9. MongoDB执行计划分析详解

    要保证数据库处于高效.稳定的状态,除了良好的硬件基础.高效高可用的数据库架构.贴合业务的数据模型之外,高效的查询语句也是不可少的.那么,如何查看并判断我们的执行计划呢?我们今天就来谈论下MongoDB ...

随机推荐

  1. int a[5]={1,2,3,4,5}; int *p=(int*)(&a+1); printf("%d",*(p-1)); 答案为什么是5?

    这个问题的关键是理解 &a a是一个数组名,也就是数组的首地址.对a进行取地址运算符,得到的是一个指向数组的指针!!!!这句话尤为重要!也就相当于int (*p) [5] = &a;p ...

  2. linux 下 apache启动、停止、重启命令

    基本的操作方法: 本文假设你的apahce安装目录为/usr/local/apache2,这些方法适合任何情况 apahce启动命令: 推荐/usr/local/apache2/bin/apachec ...

  3. 清除目录下的SVN信息

    今天需要迁移一个版本库中的子目录到新的版本库中,以为不需要保留日志信息,所以只需拿最新的代码提交就可以. 对于清除目录下的SVN信息,在网上找一些方法,并实践执行了下: 在linux下 删除这些目录是 ...

  4. 使用shell脚本获取虚拟机中cpu使用率(读/proc/statc)

    #!/bin/bash interval= cpu_num=`-] -c` start_idle=() start_total=() cpu_rate=() cpu_rate_file=./`host ...

  5. ***CI分页:为CodeIgniter写的分页类

    ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ...

  6. 高效的Nginx

    FastCGI是将CGI解释器进程保持在内存中并因此获得较高的性能.CGI解释器的反复加载是CGI性能低下的主要原因. 如果CGI解释器保持在内存中并接受FastCGI管理器的调度,则可以提供良好的性 ...

  7. HTML5入门九---Canvas画布

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. HTML5入门八---缓存控件元素的值

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. [OOD]违反里氏替换原则的解决方案

    关于OOD中的里氏替换原则,大家耳熟能祥了,不再展开,可以参考设计模式的六大设计原则之里氏替换原则.这里尝试讨论常常违反的两种形式和解决方案. 违反里氏替换原则的根源是对子类及父类关系不明确.我们在设 ...

  10. [Unity菜鸟] Character控制移动

    1. 给角色加角色控制器组件,然后用以下代码可以控制角色移动和跳跃 float speed = 6.0f; float jumpSpeed = 8.0f; float gravity = 20.0f; ...