itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用。

chain(iter1, iter2, ..., iterN):

给出一组迭代器(iter1, iter2, ..., iterN),此函数创建一个新迭代器来将所有的迭代器链接起来,返回的迭代器从iter1开始生成项,知道iter1被用完,然后从iter2生成项,这一过程会持续到iterN中所有的项都被用完。

 1 from itertools import chain
2 test = chain('AB', 'CDE', 'F')
3 for el in test:
4 print el
5
6 A
7 B
8 C
9 D
10 E
11 F

chain.from_iterable(iterables):

一个备用链构造函数,其中的iterables是一个迭代变量,生成迭代序列,此操作的结果与以下生成器代码片段生成的结果相同:

 1 >>>def f(iterables):
2 for x in iterables:
3 for y in x:
4 yield y
5
6 >>> test = f('ABCDEF')
7 >>> test.next()
8 'A'
9
10
11 >>>from itertools import chain
12 >>> test = chain.from_iterable('ABCDEF')
13 >>> test.next()
14 'A'

combinations(iterable, r):

创建一个迭代器,返回iterable中所有长度为r的子序列,返回的子序列中的项按输入iterable中的顺序排序:

 1 >>>from itertools import combinations
2 >>> test = combinations([1,2,3,4], 2)
3 >>>for el in test:
4 print el
5
6
7 (1, 2)
8 (1, 3)
9 (1, 4)
10 (2, 3)
11 (2, 4)
12 (3, 4)

count([n]):

创建一个迭代器,生成从n开始的连续整数,如果忽略n,则从0开始计算(注意:此迭代器不支持长整数),如果超出了sys.maxint,计数器将溢出并继续从-sys.maxint-1开始计算。

cycle(iterable):

创建一个迭代器,对iterable中的元素反复执行循环操作,内部会生成iterable中的元素的一个副本,此副本用于返回循环中的重复项。

dropwhile(predicate, iterable):

创建一个迭代器,只要函数predicate(item)为True,就丢弃iterable中的项,如果predicate返回False,就会生成iterable中的项和所有后续项。

1 def dropwhile(predicate, iterable):
2 # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
3 iterable = iter(iterable)
4 for x in iterable:
5 ifnot predicate(x):
6 yield x
7 break
8 for x in iterable:
9 yield x

groupby(iterable [,key]):

创建一个迭代器,对iterable生成的连续项进行分组,在分组过程中会查找重复项。

如果iterable在多次连续迭代中生成了同一项,则会定义一个组,如果将此函数应用一个分类列表,那么分组将定义该列表中的所有唯一项,key(如果已提供)是一个函数,应用于每一项,如果此函数存在返回值,该值将用于后续项而不是该项本身进行比较,此函数返回的迭代器生成元素(key, group),其中key是分组的键值,group是迭代器,生成组成该组的所有项。

ifilter(predicate, iterable):

创建一个迭代器,仅生成iterable中predicate(item)为True的项,如果predicate为None,将返回iterable中所有计算为True的项。

ifilter(lambda x: x%2, range(10)) -->13579

ifilterfalse(predicate, iterable):

创建一个迭代器,仅生成iterable中predicate(item)为False的项,如果predicate为None,则返回iterable中所有计算为False的项。

ifilterfalse(lambda x: x%2, range(10)) --> 0 2468

imap(function, iter1, iter2, iter3, ..., iterN)

创建一个迭代器,生成项function(i1, i2, ..., iN),其中i1,i2...iN分别来自迭代器iter1,iter2 ... iterN,如果function为None,则返回(i1, i2, ..., iN)形式的元组,只要提供的一个迭代器不再生成值,迭代就会停止。

 1 >>>from itertools import*
2 >>> d = imap(pow, (2,3,10), (5,2,3))
3 >>>for i in d: print i
4
5 32
6 9
7 1000
8
9 ####
10 >>> d = imap(pow, (2,3,10), (5,2))
11 >>>for i in d: print i
12
13 32
14 9
15
16 ####
17 >>> d = imap(None, (2,3,10), (5,2))
18 >>>for i in d : print i
19
20 (2, 5)
21 (3, 2)

islice(iterable, [start, ] stop [, step]):

创建一个迭代器,生成项的方式类似于切片返回值: iterable[start : stop : step],将跳过前start个项,迭代在stop所指定的位置停止,step指定用于跳过项的步幅。与切片不同,负值不会用于任何start,stop和step,如果省略了start,迭代将从0开始,如果省略了step,步幅将采用1.

def islice(iterable, *args):
# islice('ABCDEFG', 2) --> A B
# islice('ABCDEFG', 2, 4) --> C D
# islice('ABCDEFG', 2, None) --> C D E F G
# islice('ABCDEFG', 0, None, 2) --> A C E G
s = slice(*args)
it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or1))
nexti = next(it)
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it) #If start is None, then iteration starts at zero. If step is None, then the step defaults to one.
15#Changed in version 2.5: accept None values for default start and step.

izip(iter1, iter2, ... iterN):

创建一个迭代器,生成元组(i1, i2, ... iN),其中i1,i2 ... iN 分别来自迭代器iter1,iter2 ... iterN,只要提供的某个迭代器不再生成值,迭代就会停止,此函数生成的值与内置的zip()函数相同。

1 def izip(*iterables):
2 # izip('ABCD', 'xy') --> Ax By
3 iterables = map(iter, iterables)
4 while iterables:
5 yield tuple(map(next, iterables))

izip_longest(iter1, iter2, ... iterN, [fillvalue=None]):

与izip()相同,但是迭代过程会持续到所有输入迭代变量iter1,iter2等都耗尽为止,如果没有使用fillvalue关键字参数指定不同的值,则使用None来填充已经使用的迭代变量的值。

 1 def izip_longest(*args, **kwds):
2 # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
3 fillvalue = kwds.get('fillvalue')
4 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
5 yield counter() # yields the fillvalue, or raises IndexError
6 fillers = repeat(fillvalue)
7 iters = [chain(it, sentinel(), fillers) for it in args]
8 try:
9 for tup in izip(*iters):
10 yield tup
11 except IndexError:
12 pass

permutations(iterable [,r]):

创建一个迭代器,返回iterable中所有长度为r的项目序列,如果省略了r,那么序列的长度与iterable中的项目数量相同:

product(iter1, iter2, ... iterN, [repeat=1]):

创建一个迭代器,生成表示item1,item2等中的项目的笛卡尔积的元组,repeat是一个关键字参数,指定重复生成序列的次数。

1 def product(*args, **kwds):
2 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
3 # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
4 pools = map(tuple, args) * kwds.get('repeat', 1)
5 result = [[]]
6 for pool in pools:
7 result = [x+[y] for x in result for y in pool]
8 for prod in result:
9 yield tuple(prod)

repeat(object [,times]):

创建一个迭代器,重复生成object,times(如果已提供)指定重复计数,如果未提供times,将无止尽返回该对象。

1 def repeat(object, times=None):
2 # repeat(10, 3) --> 10 10 10
3 if times is None:
4 while True:
5 yield object
6 else:
7 for i in xrange(times):
8 yield object

starmap(func [, iterable]):

创建一个迭代器,生成值func(*item),其中item来自iterable,只有当iterable生成的项适用于这种调用函数的方式时,此函数才有效。

1 def starmap(function, iterable):
2 # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
3 for args in iterable:
4 yield function(*args)

takewhile(predicate [, iterable]):

创建一个迭代器,生成iterable中predicate(item)为True的项,只要predicate计算为False,迭代就会立即停止。

1 def takewhile(predicate, iterable):
2 # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
3 for x in iterable:
4 if predicate(x):
5 yield x
6 else:
7 break

tee(iterable [, n]):

从iterable创建n个独立的迭代器,创建的迭代器以n元组的形式返回,n的默认值为2,此函数适用于任何可迭代的对象,但是,为了克隆原始迭代器,生成的项会被缓存,并在所有新创建的迭代器中使用,一定要注意,不要在调用tee()之后使用原始迭代器iterable,否则缓存机制可能无法正确工作。

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
ifnot mydeque: # when the local deque is empty
newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques) #Once tee() has made a split, the original iterable should not be used anywhere else; otherwise,
the iterable could get advanced without the tee objects being informed.
#This itertool may require significant auxiliary storage (depending on how much temporary data needs to be stored).
In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use list() instead of tee().

Python中itertools模块的更多相关文章

  1. python 之 itertools模块

    官方:https://yiyibooks.cn/xx/python_352/library/itertools.html 参考: https://blog.csdn.net/neweastsun/ar ...

  2. 【Python开发】Python:itertools模块

    Python:itertools模块 itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器 ...

  3. Python中optionParser模块的使用方法[转]

    本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内 ...

  4. python中threading模块详解(一)

    python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html threading提供了一个比thr ...

  5. 【转】关于python中re模块split方法的使用

    注:最近在研究文本处理,需要用到正则切割文本,所以收索到了这篇文章,很有用,谢谢原作者. 原址:http://blog.sciencenet.cn/blog-314114-775285.html 关于 ...

  6. Python中的模块介绍和使用

    在Python中有一个概念叫做模块(module),这个和C语言中的头文件以及Java中的包很类似,比如在Python中要调用sqrt函数,必须用import关键字引入math这个模块,下面就来了解一 ...

  7. python中导入模块的本质, 无法导入手写模块的解决办法

    最近身边一些朋友发生在项目当中编写自己模块,导入的时候无法导入的问题. 下面我来分享一下关于python中导入模块的一些基本知识. 1 导入模块时寻找路径 在每一个运行的python程序当中,都维护了 ...

  8. Python中time模块详解

    Python中time模块详解 在平常的代码中,我们常常需要与时间打交道.在Python中,与时间处理有关的模块就包括:time,datetime以及calendar.这篇文章,主要讲解time模块. ...

  9. Python中collections模块

    目录 Python中collections模块 Counter defaultdict OrderedDict namedtuple deque ChainMap Python中collections ...

随机推荐

  1. PHP 判断客户端请求是 Android 还是 IOS

    <?php if(strpos($_SERVER['HTTP_USER_AGENT'], 'iPhone')||strpos($_SERVER['HTTP_USER_AGENT'], 'iPad ...

  2. C#生成随机字符串

    //<summary> ///得到随机字符. ///</summary> ///<param name="intLength">Length o ...

  3. SQL中char,varchar,nvarchar等的异同

    比较这几个数据类型,总是忘记,可能比较细节的原因.先做个记号,回头完善.

  4. 11g RAC r2 的启停命令概述1

    目标: 熟悉主要进程的启停顺序 了解独占模式 -excl crsctl start crs与crsctl start cluster 区别 1.熟悉主要进程的启停顺序 1.1 启动节点rac1: [r ...

  5. iblog语法高亮示例

    -------------------------------------------------------------------------------------- iblog 是一款 Sub ...

  6. android架构介绍

    Android其本质就是在标准的Linux系统上增加了Java虚拟机Dalvik,并在Dalvik虚拟机上搭建了一个JAVA的application framework,所有的应用程序都是基于JAVA ...

  7. Go在linux下的安装

    在Ubuntu.Debian 或者 Linux Mint上安装Go语言 下面是在基于Debian的发行版上使用apt-get来安装Go语言和它的开发工具. $ sudo apt-get install ...

  8. Ios拦截手机短信程序

    引用 1.手机要越狱,没有越狱的话,下面的可以不用看了!  2.IOS 要5.0以上,4.xx的同上  首先,声明下!由于公司移动开发的项目中,需要根据手机的内容进行逻辑处理,也就是要实现手机短信拦截 ...

  9. 微信/QQ机器人的实现

    介绍: Mojo-Webqq和Mojo-Weixin是在github上基于webQQ和网页版WeiXin,用Perl语言实现的开源的客户端框架,它通过插件提供基于HTTP协议的api接口供其他语言或系 ...

  10. 关于Resources.LoadAssetAtPath

    返回的是Object, 返回所在资源路径上的一个资源, 只能应用在unity的编辑器模式下,安卓等平台无效 static function LoadAssetAtPath (assetPath : s ...