题目描述

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

输入输出格式

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。[/b]

输入输出样例

输入样例#1:

6 3 1
aabaab
aab
输出样例#1:

2
输入样例#2:

6 3 2
aabaab
aab
输出样例#2:

7
输入样例#3:

6 3 3
aabaab
aab
输出样例#3:

7

说明

所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

题解:DP

令f[i][j][k]表示将A的前i个字母中取出k段,拼出B的前j个字母的方案数

不难推出f[i][j][k]=f[i-1][j][k]+Σf[i-x][j-x][k-1]  其中A[i-x+1...i]=B[j-x+1...j]。

可以看出这是时间复杂度为O(n*k*m^2),空间复杂度为O(n*m*k)的算法,极限数据下,会TLE+MLE。

所以怎么优化呢?

首先,考虑到f[i][j][k]只需要取到k-1和k,则采用滚动数据,将空间降低到O(n*m)。

其次,不难发现该方程中最主要的耗时在求Σf[i-x][j-x][k-1] ,则对于f[i][j],维护个斜线的前缀和(即Σf[i-x][j-x][k]的前缀和,本蒟蒻开了另一个数据s用于存储前缀数据),并且预处理出一个数据p[i][j],表示A[1..i]与B[1..j]的最长公共后缀长度,将时间复杂度降低至O(n*m*k)

初始为f[0][0][0]=1 答案为f[n][m]。

PS:自测考场上被卡常一个点,后来减少了一行取模命令后0.88s碾过....(没事少膜,会被+ns的)

 #include<iostream>
#include<cstdio>
#include<cstring>
#define N 1010
#define M 210
#define MOD 1000000007
#define L long long
using namespace std; char a[N]={},b[M]={};
L f[N][M]={},s[N][M]={},g[M][M]={};
int p[N][M]={},n,m,K; int get(int x,int y){
int i=;
while(a[x]==b[y]&&x&&y)
i++,x--,y--;
return i;
} int main(){
freopen("substring.in","r",stdin);
freopen("substring.out","w",stdout);
scanf("%d%d%d",&n,&m,&K);
scanf("%s",a+); scanf("%s",b+);
for(int i=;i<=n;i++){
s[i][]=;
for(int j=;j<=m;j++)
p[i][j]=get(i,j);
}
s[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
s[i][j]=(s[i-][j-]+f[i][j])%MOD;
}
for(int k=;k<=K;k++){
//memset(f,0,sizeof(f));
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
f[i][j]=f[i-][j];
int x=p[i][j]+;
L ss=s[i-][j-];
if(i-x>=&&j-x>=)
f[i][j]=(f[i-][j]+ss-s[i-x][j-x]+MOD)%MOD;
//ss=(ss-s[i-x][j-x]+MOD)%MOD;省了这行代码快了0.15s
else f[i][j]=(f[i-][j]+ss)%MOD;
}
}
memset(s,,sizeof(s));
for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
s[i][j]=(s[i-][j-]+f[i][j])%MOD;
}
}
cout<<f[n][m]<<endl;
}

【NOIP2015提高组】Day2 T2 子串的更多相关文章

  1. noip2015提高组day2解题报告

    1.跳石头 题目描述 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石( ...

  2. NOIP2015提高组复赛B 子串

    题目链接:https://ac.nowcoder.com/acm/contest/263/B 题目大意: 略 分析: 设preA(i)为字符串A中第1个字符到第i个字符构成的字符串. 设preB(i) ...

  3. NOIP2012提高组day2 T2借教室

    这题骗分可以骗到满分(可能是数据不太强给强行过去了) 这道题如果是按照题意去模拟用循环去修改区间的话只有45分,正解是二分+差分数组,骗分也是差分数组但是没有使用二分,时间复杂度在最坏的情况下是O(n ...

  4. 【DFS】【最短路】【spfa】【BFS】洛谷P2296 NOIP2014提高组 day2 T2 寻找道路

    存反图,从终点dfs一遍,记录下无法到达的点. 然后枚举这些记录的点,把他们的出边所连的点也全部记录. 以上这些点都是无法在最短路中出现的. 所以把两个端点都没被记录的边加进图里,跑spfa.BFS什 ...

  5. 洛谷 3959 宝藏 NOIP2017提高组Day2 T2

    [题解] 状压DP. f[i]表示现在的点是否连接的状态是i. #include<cstdio> #include<cstring> #include<algorithm ...

  6. 刷题总结——子串(NOIP2015提高组)

    题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...

  7. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  8. 【题解】NOIP2015提高组 复赛

    [题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...

  9. 18/9/16牛客网提高组Day2

    牛客网提高组Day2 T1 方差 第一眼看就知道要打暴力啊,然而并没有想到去化简式子... 可能因为昨晚没睡好,今天上午困死 导致暴力打了一个半小时,还不对... #include <algor ...

  10. [NOIP2015] 提高组 洛谷P2615 神奇的幻方

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

随机推荐

  1. 201521123007《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 补充上周异常 异常堆栈追踪:获得异常发生的根源 创建自己的异常 自定义异常类不是由Java系统监测到的异常, ...

  2. java第十一次作业

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 1.互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) 1.1 除了使用synch ...

  3. linux c函数指针的应用

    头文件:1.h #include<stdio.h> int nul_func(); int test1(int a,int b); int test2(int a,int b,int c) ...

  4. CentOS文件权限管理

    目录 文件属性 chown更改所有者 chgrp更改所属组 文件权限rwx chmod修改权限 默认权限umask 权限判定的顺序 特殊权限SUID,SGID,sticky 隐藏权限chattr,ls ...

  5. MyBatis框架(一)

    MyBatis介绍: MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为 ...

  6. Mybatis第一篇【介绍、快速入门、工作流程】

    什么是MyBatis MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为 ...

  7. TCP/IP笔记

    TCP/IP 连接 三次握手 TCP/IP 四次分手 @TODO TIME_WAIT 状态 有三种状态可以进入此状态 1.由FIN-WAIT-2,双方不同时发起FIN,主动关闭的一方在完成自身发起的关 ...

  8. JAVA对象头

    #为了防止自己忘记,先记着,之前我一直以为<深入理解JAVA虚拟机>写错了来着. 一. JAVA对象 在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header ...

  9. js中set和get的用法

    get 语句作为函数绑定在对象的属性上,当访问该属性时调用该函数. set 语法可以将一个函数绑定在当前对象的指定属性上,当那个属性被赋值时,你所绑定的函数就会被调用. eg: var log = [ ...

  10. Hadoop 2:Mapper和Reduce

    Hadoop 2:Mapper和Reduce Understanding and Practicing Hadoop Mapper and Reduce 1 Mapper过程 Hadoop将输入数据划 ...