本节矩阵线性代数有很多内容,这里重点演示计算矩阵的行列式、求逆矩阵和矩阵的乘法。

一、计算矩阵行列式【det】

import numpy as np
from numpy.linalg import det
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
c = det(a)
print(c) #行列式为0,不存在逆矩阵
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 19]])
c = det(b)
print(c) #行列式不为0,存在逆矩阵
-9.51619735393e-16
-30.0

二、求逆矩阵【inv】

import numpy as np
from numpy.linalg import inv
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 19]])
b = inv(a)
print(b) #b为a的逆矩阵
[[-1.56666667  0.46666667  0.1       ]
[ 1.13333333 0.06666667 -0.2 ]
[ 0.1 -0.2 0.1 ]]

三、矩阵的乘法【dot】

import numpy as np
from numpy.linalg import inv
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 19]])
b = inv(a)
c = np.dot(a, b)
print(c) #a跟a的逆矩阵相乘得到一个单位矩阵E
[[  1.00000000e+00   5.55111512e-17   4.16333634e-17]
[ -2.49800181e-16 1.00000000e+00 8.32667268e-17]
[ 5.41233725e-16 5.55111512e-17 1.00000000e+00]]

OK, 本讲到此结束,后续更多精彩内容,请持续关注我的博客。
												

Numpy入门 - 线性代数运算的更多相关文章

  1. python 基于numpy的线性代数运算

    import numpy as np A = [[1,2],[2,1]] np.linalg.inv(A)  #计算矩阵A的逆矩阵. #显示结果 [[-0.33333333 0.66666667] [ ...

  2. Python: 矩阵与线性代数运算

    需要执行矩阵和线性代数运算,比如矩阵乘法.寻找行列式.求解线性方程组等等. 矩阵类似于3.9 小节中数组对象,但是遵循线性代数的计算规则.下面的一个例子展示了矩阵的一些基本特性: >>&g ...

  3. Numpy入门 - 生成数组

    今天是Numpy入门系列教程第一讲,首先是安装Numpy: $ pip install numpy numpy是高性能科学计算和数据分析的基础包,本节主要介绍生成连续二维数组.随机二维数组和自定义二维 ...

  4. 用python的numpy作线性拟合、多项式拟合、对数拟合

    转自:http://blog.itpub.net/12199764/viewspace-1743145/ 项目中有涉及趋势预测的工作,整理一下这3种拟合方法:1.线性拟合-使用mathimport m ...

  5. 第一周——数据分析之表示 —— Numpy入门

    数据的维度 从一个数据到一组数据 一个数据:表达一个含义 一组数据:表达一个或者多个含义 维度:一组数据的组织形式 一维数据 由对等关系的有序或者无序数据构成,采用线性方式组织,对应列表.数组和集合等 ...

  6. 机器学习入门-线性判别分析(LDA)1.LabelEncoder(进行标签的数字映射) 2.LinearDiscriminantAnalysis (sklearn的LDA模块)

    1.from sklearn.processing import LabelEncoder 进行标签的代码编译 首先需要通过model.fit 进行预编译,然后使用transform进行实际编译 2. ...

  7. numpy入门—Numpy的核心array对象以及创建array的方法

    Numpy的核心array对象以及创建array的方法 array对象的背景: Numpy的核心数据结构,就叫做array就是数组,array对象可以是一维数组,也可以是多维数组: Python的Li ...

  8. Python数据科学手册-Numpy入门

    通过Python有效导入.存储和操作内存数据的技巧 数据来源:文档.图像.声音.数值等等,将所有的数据简单的看做数字数组 非常有助于 理解和处理数据 不管数据是何种形式,第一步都是 将这些数据转换成 ...

  9. NumPy入门及基础

    1.1 NumPy 数组对象 NumPy中的ndarray是一个多维数组对象,该对象由两部分组成:  实际的数据;  描述这些数据的元数据. 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际 ...

随机推荐

  1. 小记:Touchpad 禁用和启用

    最近上课要背着电脑到处跑,不能带外接键盘,打字时候总会碰到触控版导致光标乱飘,看了下wiki,发现有简单的命令开启或者禁用触控版,记录如下 禁用: # synclient TouchpadOff=1 ...

  2. LINUX 笔记-条件测试

    格式:test condition 文件测试状态 -d 目录 -s 文件长度大于0,非空 -f 正规文件 -w 可写 -l 符号链接 -u 文件有suid位设置 -r 可读 -x 可执行 字符串测试 ...

  3. LINUX 笔记-文件隐藏属性

    chmod u+s xxx 设置setuid(4775) chmod g+s xxx 设置gid(2775) chmod o+t xxx 设置stick bit,针对目录(1775)

  4. C# 8.0的三个令人兴奋的新特性

    C# 语言是在2000发布的,至今已正式发布了7个版本,每个版本都包含了许多令人兴奋的新特性和功能更新.同时,C# 每个版本的发布都与同时期的 Visual Studio 以及 .NET 运行时版本高 ...

  5. 【hihoCoder】#1039 : 字符消除 by C solution

    #1039 : 字符消除 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi最近在玩一个字符消除游戏.给定一个只包含大写字母"ABC"的字符串s,消 ...

  6. 微信小程序左滑删除功能

    效果图如下: wxml代码: <view class="container"> <view class="touch-item {{item.isTou ...

  7. 机器学习之三:logistic回归(最优化)

    一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大.如果非要应用进入,可以使用logistic回归. logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函 ...

  8. 【XML】xStream浅录

    XStream可以用来转换对象-XML,或者XML-对象. 官网地址:http://x-stream.github.io 小案例: 实体类 FileVo.java package cn.pinnsvi ...

  9. BZOJ-2463

    2463: [中山市选2009]谁能赢呢? Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2321  Solved: 1711[Submit][Sta ...

  10. CS231n 2017 学习笔记01——KNN(K-Nearest Neighbors)

    本博客内容来自 Stanford University CS231N 2017 Lecture 2 - Image Classification 课程官网:http://cs231n.stanford ...