欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~

作者:腾讯云容器服务团队

源码为 k8s v1.6.1 版本,github 上对应的 commit id 为 b0b7a323cc5a4a2019b2e9520c21c7830b7f708e

本文将对 Scheduler 的调度算法原理和执行过程进行分析,重点介绍 Scheduler 算法中预选和优选的相关内容。

Kubernetes Scheduler的基本功能

Kubernetes Scheduler 的作用是根据特定的调度算法将pod调度到指定的工作节点(Node)上,这一过程也叫绑定(bind)。Scheduler 的输入为需要调度的 Pod 和可以被调度的节点(Node)的信息,输出为调度算法选择的 Node,并将该 pod bind 到这个 Node 。

Kubernetes Scheduler中调度算法分为两个阶段:
预选 : 根据配置的 Predicates Policies(默认为 DefaultProvider 中定义的 default predicates policies 集合)过滤掉那些不满足Policies的的Nodes,剩下的Nodes作为优选的输入。

优选 : 根据配置的 Priorities Policies(默认为 DefaultProvider 中定义的 default priorities policies 集合)给预选后的Nodes进行打分排名,得分最高的Node即作为最适合的Node,该Pod就Bind到这个Node。

预选规则详细说明

预先规则主要用于过滤出不符合规则的Node节点,剩下的节点作为优选的输入。在1.6.1版本中预选规则包括:

详细的规则说明:

(1) NoDiskConflict : 检查在此主机上是否存在卷冲突。如果这个主机已经挂载了卷,其它使用这个卷的Pod不能调度到这个主机上。GCE 、Amazon EBS 和 Ceph RBD 使用的规则如下:

  1. GCE 允许同时挂载多个卷,只要这些卷都是只读的。
  2. Amazon EBS 不允许不同的 Pod 挂载同一个卷。
  3. Ceph RBD 不允许任何两个 pods 分享相同的 monitor,match pool 和 image。
    注:ISCSI 与 GCE 一样,在卷都是只读的情况下,允许挂载两个 IQN 相同的卷。

(2) NoVolumeZoneConflict : 检查在给定的 zone 限制前提下,检查在此主机上部署 Pod 是否存在卷冲突,目前指对 PV 资源进行检查(NewVolumeZonePredicate对象predicate函数)。

(3) MaxEBSVolumeCount : 确保已挂载的 EBS 存储卷不超过设置的最大值。默认值是39。它会检查直接使用的存储卷,和间接使用这种类型存储的 PVC 。计算不同卷的总目,如果新的 Pod 部署上去后卷的数目会超过设置的最大值,那么 Pod 就不能调度到这个主机上。

(4) MaxGCEPDVolumeCount : 确保已挂载的 GCE 存储卷不超过设置的最大值。默认值是16。规则同MaxEBSVolumeCount。

(5) MaxAzureDiskVolumeCount : 确保已挂载的Azure存储卷不超过设置的最大值。默认值是16。规则同MaxEBSVolumeCount。

(6) CheckNodeMemoryPressure : 判断节点是否已经进入到内存压力状态,如果是则只允许调度内存为0标记的 Pod。

(7) CheckNodeDiskPressure : 判断节点是否已经进入到磁盘压力状态,如果是则不调度新的Pod。

(8) PodToleratesNodeTaints : Pod 是否满足节点容忍的一些条件。

(9) MatchInterPodAffinity : 节点亲和性筛选。

(10) GeneralPredicates : 包含一些基本的筛选规则(PodFitsResources、PodFitsHostPorts、HostName、MatchNodeSelector)。

(11) PodFitsResources : 检查节点上的空闲资源(CPU、Memory、GPU资源)是否满足 Pod 的需求。

(12) PodFitsHostPorts : 检查 Pod 内每一个容器所需的 HostPort 是否已被其它容器占用。如果有所需的HostPort不满足要求,那么 Pod 不能调度到这个主机上。

(13) 检查主机名称是不是 Pod 指定的 HostName。

(14) 检查主机的标签是否满足 Pod 的 nodeSelector 属性需求。

优选规则详细说明

优选规则对符合需求的主机列表进行打分,最终选择一个分值最高的主机部署 Pod。kubernetes 用一组优先级函数处理每一个待选的主机。每一个优先级函数会返回一个0-10的分数,分数越高表示主机越“好”,同时每一个函数也会对应一个表示权重的值。最终主机的得分用以下公式计算得出:

finalScoreNode = (weight1 priorityFunc1) + (weight2 priorityFunc2) + … + (weightn * priorityFuncn)

详细的规则说明:
(1) SelectorSpreadPriority : 对于属于同一个 service、replication controller 的 Pod,尽量分散在不同的主机上。如果指定了区域,则会尽量把 Pod 分散在不同区域的不同主机上。调度一个 Pod 的时候,先查找 Pod 对于的 service或者 replication controller,然后查找 service 或 replication controller 中已存在的 Pod,主机上运行的已存在的 Pod 越少,主机的打分越高。

(2) LeastRequestedPriority : 如果新的 pod 要分配一个节点,这个节点的优先级就由节点空闲的那部分与总容量的比值((总容量-节点上pod的容量总和-新pod的容量)/总容量)来决定。CPU 和 memory 权重相当,比值最大的节点的得分最高。需要注意的是,这个优先级函数起到了按照资源消耗来跨节点分配 pods 的作用。计算公式如下:
cpu((capacity – sum(requested)) 10 / capacity) + memory((capacity – sum(requested)) 10 / capacity) / 2

(3) BalancedResourceAllocation : 尽量选择在部署 Pod 后各项资源更均衡的机器。BalancedResourceAllocation 不能单独使用,而且必须和 LeastRequestedPriority 同时使用,它分别计算主机上的 cpu 和 memory 的比重,主机的分值由 cpu 比重和 memory 比重的“距离”决定。计算公式如下:score = 10 – abs(cpuFraction-memoryFraction)*10

(4) NodeAffinityPriority : Kubernetes 调度中的亲和性机制。Node Selectors(调度时将 pod 限定在指定节点上),支持多种操作符(In、 NotIn、 Exists、DoesNotExist、 Gt、 Lt),而不限于对节点 labels 的精确匹配。另外,Kubernetes 支持两种类型的选择器,一种是 “ hard(requiredDuringSchedulingIgnoredDuringExecution)” 选择器,它保证所选的主机满足所有Pod对主机的规则要求。这种选择器更像是之前的 nodeselector,在 nodeselector 的基础上增加了更合适的表现语法。另一种 “ soft(preferresDuringSchedulingIgnoredDuringExecution)” 选择器,它作为对调度器的提示,调度器会尽量但不保证满足 NodeSelector 的所有要求。

(5) InterPodAffinityPriority : 通过迭代 weightedPodAffinityTerm 的元素计算和,并且如果对该节点满足相应的PodAffinityTerm,则将 “weight” 加到和中,具有最高和的节点是最优选的。

(6) NodePreferAvoidPodsPriority(权重1W) : 如果 Node 的 Anotation 没有设置 key-value:scheduler. alpha.kubernetes.io/ preferAvoidPods = "...",则该 node 对该 policy 的得分就是10分,加上权重10000,那么该node对该policy的得分至少10W分。如果Node的Anotation设置了,scheduler.alpha.kubernetes.io/preferAvoidPods = "..." ,如果该 pod 对应的 Controller 是 ReplicationController 或 ReplicaSet,则该 node 对该 policy 的得分就是0分。

(7) TaintTolerationPriority : 使用 Pod 中 tolerationList 与 Node 节点 Taint 进行匹配,配对成功的项越多,则得分越低。

另外在优选的调度规则中,有几个未被默认使用的规则:

(1) ImageLocalityPriority : 据主机上是否已具备 Pod 运行的环境来打分。ImageLocalityPriority 会判断主机上是否已存在 Pod 运行所需的镜像,根据已有镜像的大小返回一个0-10的打分。如果主机上不存在 Pod 所需的镜像,返回0;如果主机上存在部分所需镜像,则根据这些镜像的大小来决定分值,镜像越大,打分就越高。

(2) EqualPriority : EqualPriority 是一个优先级函数,它给予所有节点一个相等的权重。

(3) ServiceSpreadingPriority : 作用与 SelectorSpreadPriority 相同,已经被 SelectorSpreadPriority 替换。

(4) MostRequestedPriority : 在 ClusterAutoscalerProvider 中,替换 LeastRequestedPriority,给使用多资源的节点,更高的优先级。计算公式为:(cpu(10 sum(requested) / capacity) + memory(10 sum(requested) / capacity)) / 2

相关阅读

td { border: 1px solid #ccc }
br { }

老司机和你深聊Kubenertes 资源分配之 Request 和 Limit 解析

kubernetes 容器编排系统介绍

5 种 Docker 日志最佳实践

此文已由作者授权腾讯云技术社区发布,转载请注明文章出处

原文链接:https://cloud.tencent.com/community/article/339740

资深实践篇 | 基于Kubernetes 1.61的Kubernetes Scheduler 调度详解的更多相关文章

  1. Kubernetes K8S之固定节点nodeName和nodeSelector调度详解

    Kubernetes K8S之固定节点nodeName和nodeSelector调度详解与示例 主机配置规划 服务器名称(hostname) 系统版本 配置 内网IP 外网IP(模拟) k8s-mas ...

  2. 基于python中staticmethod和classmethod的区别(详解)

    例子 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 class A(object):   def foo(self,x):     print "executing foo ...

  3. 基于Python对象引用、可变性和垃圾回收详解

    基于Python对象引用.可变性和垃圾回收详解 下面小编就为大家带来一篇基于Python对象引用.可变性和垃圾回收详解.小编觉得挺不错的,现在就分享给大家,也给大家做个参考. 变量不是盒子 在示例所示 ...

  4. 基于Docker搭建Maven私服Nexus,Nexus详解

    备注:首先在linux环境安装Java环境和Docker,私服需要的服务器性能和硬盘存储要高一点,内存不足可能到时启动失败,这里以4核8GLinux服务器做演示 一:基于Docker安装nexus3 ...

  5. [Kubernetes]PV,PVC,StorageClass之间的关系详解

    在Kubernetes中,容器化一个应用比较麻烦的地方莫过于对其"状态"的管理,而最常见的"状态",莫过于存储状态. 在[Kubernetes]深入理解Stat ...

  6. kubernetes 亲和性调度详解

    文章目录 1 概述: 2 场景一:调度到一组具有相同特性的主机上(label+nodeSelector) 3 场景二:部署的应用不想调度到某些节点上(nodeaffinity) 4 场景三:部署的应用 ...

  7. 基于PBOC电子钱包的圈存过程详解

    基于pboc的电子钱包的圈存过程,供智能卡行业的开发人员参考 一. 圈存 首先终端和卡片有一个共同的密钥叫做圈存密钥:LoadKey   (Load即圈存的意思,unLoad,是圈提的意思) 假设Lo ...

  8. 基于pytorch实现HighWay Networks之Highway Networks详解

    (一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经 ...

  9. 基于 Web 的远程 Terminal 模拟器安装使用详解

    http://lzw.me/a/shellinabox.html 一.Shellinabox 简介 Shellinabox 是一个基于 web 的终端模拟器,采用 C 语言编写,使用 Ajax 与后端 ...

随机推荐

  1. struts2中struts.xml配置文件详解

    struts.xml的常用配置 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts ...

  2. c#控件攻略宝典之ListBox控件

    ListBox控件的使用: 1)控件属性 Items SelectedItems SelectioModes 2)数据绑定 DataSoure DisplayMember ValueMenber 3) ...

  3. RabbitMQ和SpringBoot的简单整合列子

    一 思路总结 1 主要用spring-boot-starter-amqp来整合RabbitMQ和SpringBoot 2 使用spring-boot-starter-test来进行单元测试 3编写配置 ...

  4. Kaggle实战之二分类问题

    0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...

  5. redux中间件的原理——从懵逼到恍然大悟

    前言react已经出来很久了,其生态圈之庞大,一锅炖不下!各种react-xx,已让我们不堪重负,github上随便一个demo,引入的模块至少都是五指之数+.看着头疼,嚼之无味…….在此建议新学者, ...

  6. Python学习笔记整理总结【Memcache & Redis】

    一.Memcached1.简介Memcached 是一个高性能的分布式内存对象缓存系统,一般的使用目的是,通过缓存数据库查询结果,减少数据库访问次数,以提高动态Web应用的速度.提高可扩展性.用来存储 ...

  7. C# Excel写入数据及图表

    开发工具:VS2017 语言:C DotNet版本:.Net FrameWork 4.0及以上 使用的DLL工具名称:GemBox.Spreadsheet.dll (版本:37.3.30.1185) ...

  8. Promise原理与实现探究的一种思路

    写在前面 这个文章,展现的是一个实现Promise的思路,以及如何发现和处理问题的情境. 从现有的Promise分析 如果我们想要自己实现一个简单的Promise,那现有规范规定的Promise肯定是 ...

  9. Linux磁盘分区(二):删除

    ***********************************************声明************************************************ 原创 ...

  10. Java分布式锁之数据库实现

    之前的文章<Java分布式锁实现>中列举了分布式锁的3种实现方式,分别是基于数据库实现,基于缓存实现和基于zookeeper实现.三种实现方式各有可取之处,本篇文章就详细讲解一下Java分 ...