LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
click to show more practice.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目标签:Array
Java Solution 1:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:基于 Kadane's Algorithm 改变
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 1: O(n)
// check param validation.
if(nums == null || nums.length == 0)
return 0; int sum = 0;
int max = Integer.MIN_VALUE; // iterate nums array.
for (int i = 0; i < nums.length; i++)
{
// choose a larger one between current number or (previous sum + current number).
sum = Math.max(nums[i], sum + nums[i]);
max = Math.max(max, sum); // choose the larger max.
} return max;
} }
Java Solution 2:
Runtime beats 71.37%
完成日期:03/28/2017
关键词:Array
关键点:Kadane's Algorithm
public class Solution
{
public int maxSubArray(int[] nums)
{
int max_ending_here = 0;
int max_so_far = Integer.MIN_VALUE; for(int i = 0; i < nums.length; i++)
{
if(max_ending_here < 0)
max_ending_here = 0;
max_ending_here += nums[i];
max_so_far = Math.max(max_so_far, max_ending_here);
}
return max_so_far;
} }
Java Solution 3:
Runtime beats 29.96%
完成日期:03/29/2017
关键词:Array
关键点:Divide and Conquer
public class Solution
{
public int maxSubArray(int[] nums)
{
// Solution 3: Divide and Conquer. O(nlogn)
if(nums == null || nums.length == 0)
return 0; return Max_Subarray_Sum(nums, 0, nums.length-1);
} public int Max_Subarray_Sum(int[] nums, int left, int right)
{
if(left == right) // base case: meaning there is only one element.
return nums[left]; int middle = (left + right) / 2; // calculate the middle one. // recursively call Max_Subarray_Sum to go down to base case.
int left_mss = Max_Subarray_Sum(nums, left, middle);
int right_mss = Max_Subarray_Sum(nums, middle+1, right); // set up leftSum, rightSum and sum.
int leftSum = Integer.MIN_VALUE;
int rightSum = Integer.MIN_VALUE;
int sum = 0; // calculate the maximum subarray sum for right half part.
for(int i=middle+1; i<= right; i++)
{
sum += nums[i];
rightSum = Integer.max(rightSum, sum);
} sum = 0; // reset the sum to 0. // calculate the maximum subarray sum for left half part.
for(int i=middle; i>= left; i--)
{
sum += nums[i];
leftSum = Integer.max(leftSum, sum);
} // choose the max between left and right from down level.
int res = Integer.max(left_mss, right_mss);
// choose the max between res and middle range. return Integer.max(res, leftSum + rightSum); } }
参考资料:
http://www.cnblogs.com/springfor/p/3877058.html
https://www.youtube.com/watch?v=ohHWQf1HDfU
LeetCode 算法题目列表 - LeetCode Algorithms Questions List
LeetCode 53. Maximum Subarray(最大的子数组)的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] Minimum Size Subarray Sum 最短子数组之和
Given an array of n positive integers and a positive integer s, find the minimal length of a subarra ...
- C#解leetcode 53.Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- C#核心语法讲解-泛型(详细讲解泛型方法、泛型类、泛型接口、泛型约束,了解协变逆变)
泛型(generic)是C#语言2.0和通用语言运行时(CLR)的一个新特性.泛型为.NET框架引入了类型参数(type parameters)的概念.类型参数使得设计类和方法时,不必确定一个或多个具 ...
- mount挂载和交换分区swap
目录 mount挂载 挂载方法 选项 查看设备 卸载命令 文件挂载配置文件fstab 交换文件与分区 swap优先级 三个工具free,df,du 扩展 移动介质 使用光盘 挂载USB设备 mount ...
- Mybatis第四篇【多表连接】
Mybatis多表连接 我们在学习Hibernate的时候,如果表涉及到两张的话,那么我们是在映射文件中使用<set>..<many-to-one>等标签将其的映射属性关联起来 ...
- bookStore第三篇【用户模块、购买模块、订单模块】
用户模块 要登陆后才能购买,因此我们先写购买模块 设计实体 private String id; private String username; private String password; p ...
- Django中的信号及其用法
Django中提供了"信号调度",用于在框架执行操作时解耦. 一些动作发生的时候,系统会根据信号定义的函数执行相应的操作 Django中内置的signal Model_signal ...
- Day-1:初识开发板与基础知识
买的这款51,ARM,AVR三合一的单片机,也不知道后面具体使用会不会有问题,先玩玩看吧. ------------------------------------------------------ ...
- css左右布局的几种实现方式和优缺点
记录一下左右布局的实现方式,实现的具体效果是,左侧固定宽度,高度适中等于父元素的高度,父元素的高度由右侧内容决定: html代码如下: <div class="parent" ...
- 调用惯例Calling Convention (或者说:调用约定)
调用惯例影响执行效率,参数的传递方式以及栈清除的方式. 调用惯例 参数传递顺序 谁负责清除参数 参数是否使用暂存器 register 从左到右 被调用者 是 pascal 从左到右 被调用者 否 ...
- Perfect Pth Powers poj1730
Perfect Pth Powers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16383 Accepted: 37 ...
- IIS7中JS、CSS、Image无法显示和加载解决方案
前两天把机器从Windows7升级到Windows10,IIS也跟着升级了,在获取项目搭载IIS上发现原有的页面中所有的JS.CSS.Image都无法访问,提示500错误,起初以为是IIS没有装好 重 ...