一、租约详解

Why租约

HDFS的读写模式为 "write-once-read-many",为了实现write-once,需要设计一种互斥机制,租约应运而生
租约本质上是一个有时间约束的锁,即:在一定时间内对租约持有者(也就是客户端)赋予一定的权限

HDFS租约模型

<Lease>
Lease和DFSClient的对应关系为一对一(即:在Hdfs-Server端,为每个DFSClient建立一个Lease),Lease包含的主要信息有:
  * holder:租约持有者(即:DFSClient)
  * lastUpdate:上次续约时间
  * paths:该租约持有的文件路径
  * softLimit和hardLimit
    > 当前时间减去Lease的lastUpdate超过softLimit,允许其它DFSClient抢占该Client持有的filepath(softLimit的默认值为1min)
    > 当前时间减去Lease的astUpdate超过hardLimit,允许LeaseManager强制将该租约回收销毁(hardLimit的默认值为1hour)

<LeaseManager>
顾名思义,LeaseManager是租约的管理者,运行于HDFS-Server端,其主要功能特性有:
  * 维护了DFSClient和Lease的映射关系(参见leases属性)
  * 维护了filePath和Lease的映射关系(参见sortedLeasesByPath属性)
  * 对租约进行生命周期和状态的管理:
    > 创建租约或正常情况下的销毁租约
    > 赋予(或撤销)FilePath权限给租约(撤销FilePath,如:执行文件流的close方法)
    > 接受续约请求,对租约进行续约处理(即:更新Lease的lastUpdate字段)
    > 对超过hardLimit的租约进行销毁处理(参见:LeaseManager.Monitor类)

<LeaseRenewer>
顾名思义,LeaseRenewer是租约的续约者,运行于HDFS-Client端,其主要功能特性有:
  * LeaseRenewer维护了一个DFSClient列表和一个定时线程,循环不断的为各个DFSClient进行续约操作
  * LeaseRenew本质上是一个heartbeat,方便对超时的DFSClient进行容错处理
  * 从client到server端续约的主流程如下:LeaseRenewer -> DFSClient -> NameNodeRpcServer -> FSNamesystem -> LeaseManager
  * 其它细节此处不再阐述,直接看源码即可

<FSNamesystem>
LeaseManager用来管理租约,那么,FSNamesystem用来协调租约,其主要功能特性有:
  * FSNamesystem中和租约相关最核心的一个方法是recoverLeaseInternal,startFile方法、appendFile方法和recoverLease方法都会调用该方法,该方法主要功能有:
    > 验证ReCreate
     如果待操作的文件path已经存在于该DFSClient的Lease的paths列表中,则抛AlreadyBeingCreatedException,
     提示 "current leaseholder is trying to recreate file"
    > 验证OtherCreate
     如果待操作的文件path已经存在于其它DFSClient的Lease的paths列表中,此时有两种策略:如果那个DFSClient的Lease的softLimit已经过期,
     系统会尝试进行Lease-Recovery,然后把path从那个DFSClient的Lease的paths中remove掉,这样新的Client便获取了该path的占有权限;
     如果那个DFSClient的Lease的softLimit还未过期,则抛AlreadyBeingCreatedException,提示 "because this file is already being created by ... on ..."    
    > 验证Recovery
     这个比较简单,如果待操作的文件还处于租约的Recovery状态,则抛异常RecoveryInProgressException,提示稍后重试
    > ForceRecovery
     recoverLeaseInternal方法提供了force参数,如果force为true,系统会强制进行Lease-Recovery,具体功能见recoverLease方法的注释即可,如下:
       * Immediately revoke the lease of the current lease holder and start lease
       * recovery so that the file can be forced to be closed.
      
force recovery的使用场景下文会有介绍

Recovery机制

recovery是一种容错机制,主要分为block的recovery和lease的recovery,此处不详述,具体可参考下面的链接:
http://blog.cloudera.com/blog/2015/02/understanding-hdfs-recovery-processes-part-1/

二、场景介绍

如上图所示,我们的应用场景介绍如下:
* Worker:一个Worker是一个进程,每个Worker负责运行一批Task
* Task:Task负责把抓取到的数据源源不断的实时同步到Hdfs,每个Task负责管理Hdfs中的N个文件(如上图,Task-1在hdfs中对应了Task-1-file-1和Task-1-file-2)
* (Re-)balance:Task和Worker之间的关系是动态的(即:Task在Worker上是平均分配的),当新Worker加入,现有Worker退出、新增Task和删除Task的时候,会触发Rebalance,Task重新分配。比如上图中,增加一个Worker-3,Reblance完成之后的结果为:worker-1运行Task-1和Task-2,worker-2运行Task-3和Task-4,worker-3运行Task-5

三、设计方案

结合租约的特点和我们的场景需求,需要进行针对性的设计,才能避免触发【租约异常】,下面以问答的形式阐述核心设计方案

一个进程内如何同时访问多个hadoop集群?

若要一个进程内同时访问多个hadoop集群,那就需要针对每个集群分别创建各自的FileSystem实例,需要做的有两点:
* 其一:保证针对这多个集群的Configuration实例中的 "fs.defaultFS" 的配置是不同的
* 其二:HADOOP_USER_NAME属性不能通过System.setProperty方法设置,应该调用FileSystem的get方法时动态传入

对文件流应该怎样管理?

Ps:DFSClient是一个进程级实例,即对应同一个hadoop集群,在一个worker进程中只有一个DFSClient
一个文件对应了一个文件流,创建文件流时FSNamesystem会把流对应的path放到Lease中,关闭文件流时FSNamesystem会把流对应的path从Lease中移除,对文件流的管理需要保证以下几个原则
* 其一:流的生命周期应该和Task保持一致,Task运行过程中流随用随创建,Task关闭时把其占有的所有流也关闭,这样才能保证在发生Reblance后,不会出现租约被其它DFSClient占用的问题
* 其二:超时不用的流要及时清理,保证其它使用者有机会获取权限,比如发生日切之后,所有的数据都写到新文件中了,前一天的文件不会再有写入操作,那么应该及时关闭前一天的文件流

如何解决Other-Create问题?

何时会触发Other-Create问题?
其一:Worker宕机,其负责的Task漂移到其它Worker,漂移后的Task便会收到Other-Create异常,只有当超过softLimit之后,异常才会解除,即恢复时间需要1分钟
其二:其它程序原因,如:在发生Reblance时,Task会先被关闭再漂移,如果Task在关闭的过程中流关闭的有问题(比如触发了超时),也可能会触发Other-Create异常
如何应对?
Other-Create异常中包含了other-Dfsclient的IP信息,我们可以调用other-worker提供的接口,远程关闭出问题的流,如果关闭失败或者访问出现超时(宕机的时候会超时),再进行force recovery操作

如何解决Re-Create问题?

流关闭时可能会出现异常,如果出现异常,需要进行force recovery操作,否则的话租约将一直不可释放,一直报Re-Create异常

四、源码解析

【设计方案】部分的描述比较抽象,下面我们结合源码进行更详细的介绍,所有的关键描述都放到了源码注释里,直接看注释即可

package com.ucar.hdfs.lease.demo;

import com.ucar.hdfs.lease.demo.stream.FileStreamHolder;
import com.ucar.hdfs.lease.demo.stream.FileStreamToken;
import com.ucar.hdfs.lease.demo.util.FileLockUtils;
import com.ucar.hdfs.lease.demo.util.HdfsConfig;
import com.ucar.hdfs.lease.demo.util.RemoteUtil;
import org.apache.hadoop.fs.FSDataOutputStream; import java.text.MessageFormat;
import java.util.List;
import java.util.concurrent.locks.ReentrantLock; /**
* 一个Demo类,可以自己写一些单元测试类,验证租约相关的原理
*/
public class TaskDemo { private final FileStreamHolder fileStreamHolder;
private final HdfsConfig hdfsConfig;
private final String filePathPrefix; public TaskDemo(FileStreamHolder fileStreamHolder, HdfsConfig hdfsConfig, String filePathPrefix) {
this.fileStreamHolder = fileStreamHolder;
this.hdfsConfig = hdfsConfig;
this.filePathPrefix = filePathPrefix;
} public void start() {
fileStreamHolder.start();
} public void stop() {
fileStreamHolder.close();
} public void writeData(String fileName, List<String> content) throws Exception {
String hdfsFilePath = this.hdfsConfig.getHdfsAddress() + filePathPrefix + fileName + ".txt"; ReentrantLock lock = FileLockUtils.getLock(hdfsFilePath);
FileStreamToken fileStreamToken = null;
try {
lock.lock();
fileStreamToken = fileStreamHolder.getStreamToken(hdfsFilePath, this.hdfsConfig);
writeDataInternal(fileStreamToken.getFileStream(), content);
} catch (Exception e) {
if (fileStreamToken != null) {
// 出现异常的时候,必须把流回收一下,否则的话异常会持续不断的报,并且无法自动恢复
// 我们曾经遇到过的根本无法自动恢复的异常有: /*
Caused by: java.net.ConnectException: Connection timed out
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) ~[na:1.8.0_121]
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717) ~[na:1.8.0_121]
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206) ~[na:na]
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:530) ~[na:na]
at org.apache.hadoop.hdfs.DFSOutputStream.createSocketForPipeline(DFSOutputStream.java:1610) ~[na:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:1123) ~[na:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:1112) ~[na:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1253) ~[na:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:594) ~[na:na]
*/ /*
Caused by: java.io.IOException: Failed to replace a bad datanode on the existing pipeline due to no more good datanodes being available to try. (Nodes: current=[xxx:50010, xxx:50010], original=[xxx:50010, xxx:50010]). The current failed datanode replacement policy is DEFAULT, and a client may configure this via 'dfs.client.block.write.replace-datanode-on-failure.policy' in its configuration.
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.findNewDatanode(DFSOutputStream.java:1040) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:1106) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1253) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:1004) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:548) ~[hadoop-hdfs-2.6.3.jar:na]
*/ /*
Caused by: java.net.SocketTimeoutException: 70000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/xxx:36061 remote=/xxx:50010]
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164) ~[hadoop-common-2.6.3.jar:na]
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161) ~[hadoop-common-2.6.3.jar:na]
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131) ~[hadoop-common-2.6.3.jar:na]
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118) ~[hadoop-common-2.6.3.jar:na]
at java.io.FilterInputStream.read(FilterInputStream.java:83) ~[na:1.8.0_121]
at java.io.FilterInputStream.read(FilterInputStream.java:83) ~[na:1.8.0_121]
at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:2205) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:1142) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:1112) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1253) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:1004) ~[hadoop-hdfs-2.6.3.jar:na]
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:548) ~[hadoop-hdfs-2.6.3.jar:na]
*/
fileStreamHolder.close(hdfsFilePath);
} else {
//可能是Other-Create异常,尝试远程关闭
RemoteUtil.tryRemoteClose(hdfsFilePath, e);
}
throw new RuntimeException(MessageFormat.format("Data Append failed for file - {0}.", hdfsFilePath), e);
} finally {
if (fileStreamToken != null) {
fileStreamToken.setLastUpdateTime(System.currentTimeMillis());
}
if (lock != null) {
lock.unlock();
}
}
} private void writeDataInternal(FSDataOutputStream fsOut, List<String> transferData) throws Exception {
StringBuffer sb = new StringBuffer();
for (String row : transferData) {
sb.append(row);
sb.append("\n");
} byte[] bytes = sb.toString().getBytes("UTF-8");
fsOut.write(bytes);
fsOut.hsync();
}
}
package com.ucar.hdfs.lease.demo.util;

import org.apache.hadoop.hdfs.protocol.AlreadyBeingCreatedException;
import org.apache.hadoop.ipc.RemoteException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.regex.Matcher;
import java.util.regex.Pattern; public class RemoteUtil {
private static final Logger logger = LoggerFactory.getLogger(RemoteUtil.class);
private static final String RECREATE_IDENTIFIER = "because this file is already being created by"; public static void tryRemoteClose(String hdfsFilePath, Exception e) {
try {
if (e instanceof RemoteException) {
RemoteException re = (RemoteException) e;
String className = re.getClassName();
if (className.equals(AlreadyBeingCreatedException.class.getName()) && e.getMessage().contains(RECREATE_IDENTIFIER)) {
logger.info("stream remote close begin for file : " + hdfsFilePath);
colseInternal(hdfsFilePath, parseIp(e.getMessage()));
logger.info("stream remote close end for file : " + hdfsFilePath);
}
}
} catch (Exception ex) {
logger.error("stream remote close failed for file : " + hdfsFilePath, ex);
}
} static void colseInternal(String hdfsFilePath, String address) {
//TODO
// 远程调用其它进程,进行流关闭操作
// 此处应该进行更细致的处理
// 1. 如果流关闭失败了,我们也应该执行一下FileSystem的recoverLease方法
// 2. 如果访问超时了,那么应该出现了宕机的情况,虽然通过softLimit会自动恢复,但是如果实时性要求高,应该也执行一下FileSystem的recoverLease方法
// 3. 或者根据自己的场景,压根儿就不远程关闭,强制执行recoverLease方法也行
} private static String parseIp(String message) {
Pattern p = Pattern.compile("\\[.*?\\]");
Matcher m = p.matcher(message);
String ip = null;
while (m.find()) {
ip = m.group().replace("[", "").replace("]", "");
}
return ip;
}
}
package com.ucar.hdfs.lease.demo.util;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration; import java.net.URI; /**
* e.g.
*
* hdfsAddress -> hdfs://hadoop2cluster
* zkUrl -> 192.168.0.1,192.168.0.2,192.168.0.3
* zkPort -> 2181
* hadoopUser -> hadoop
* haNameNode1 -> namenode01.10101111.com:8020
* haNameNode2 -> namenode02.10101111.com:8020
* hdfsPacketSize -> 20971520
*
*/
public class HdfsConfig {
private volatile String hdfsAddress;
private volatile URI hdfsUri;
private volatile String zkUrl;
private volatile String zkPort;
private volatile String hadoopUser;
private volatile String haNameNode1;
private volatile String haNameNode2;
private volatile Long hdfsPacketSize;
private volatile Configuration configuration; public HdfsConfig(String hdfsAddress, String zkUrl, String zkPort, String hadoopUser, String haNameNode1, String haNameNode2, long hdfsPacketSize) {
this.hdfsAddress = hdfsAddress;
this.zkUrl = zkUrl;
this.zkPort = zkPort;
this.hadoopUser = hadoopUser;
this.haNameNode1 = haNameNode1;
this.haNameNode2 = haNameNode2;
this.hdfsPacketSize = hdfsPacketSize;
this.hdfsUri = URI.create(this.hdfsAddress);
this.buildConfiguration();
} private void buildConfiguration() {
this.configuration = HBaseConfiguration.create();
this.configuration.set("fs.defaultFS", this.hdfsAddress);
this.configuration.set("dfs.support.append", "true");
this.configuration.set("hbase.zookeeper.quorum", this.zkUrl);
this.configuration.set("hbase.zookeeper.property.clientPort", this.zkPort);
this.configuration.set("dfs.client-write-packet-size", String.valueOf(hdfsPacketSize)); // 高可用设置
String key = hdfsUri.getAuthority();
this.configuration.set("dfs.nameservices", key);
this.configuration.set(String.format("dfs.ha.namenodes.%s", key), "nn1,nn2");
this.configuration.set(String.format("dfs.namenode.rpc-address.%s.nn1", key), this.haNameNode1);
this.configuration.set(String.format("dfs.namenode.rpc-address.%s.nn2", key), this.haNameNode2);
this.configuration.set(String.format("dfs.client.failover.proxy.provider.%s", key), "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");
} public String getHdfsAddress() {
return hdfsAddress;
} public URI getHdfsUri() {
return hdfsUri;
} public String getZkUrl() {
return zkUrl;
} public String getZkPort() {
return zkPort;
} public String getHadoopUser() {
return hadoopUser;
} public String getHaNameNode1() {
return haNameNode1;
} public String getHaNameNode2() {
return haNameNode2;
} public Configuration getConfiguration() {
return configuration;
} public long getHdfsPacketSize() {
return hdfsPacketSize;
}
}
package com.ucar.hdfs.lease.demo.util;

import com.google.common.cache.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock; public class FileLockUtils { private static final Logger logger = LoggerFactory.getLogger(FileLockUtils.class); private static final LoadingCache<String, ReentrantLock> lockCache = CacheBuilder
.newBuilder()
.expireAfterAccess(24, TimeUnit.HOURS)
.removalListener(new RemovalListener<Object, Object>() {
@Override
public void onRemoval(RemovalNotification<Object, Object> notification) {
logger.info(String.format("Lock for [%s] was removed , cause is [%s]",
notification.getKey(),
notification.getCause())
);
}
})
.build(new CacheLoader<String, ReentrantLock>() {
@Override
public ReentrantLock load(String key) throws Exception {
return new ReentrantLock();
}
}); public static ReentrantLock getLock(String hdfsFilePath) {
return lockCache.getUnchecked(hdfsFilePath);
}
}
package com.ucar.hdfs.lease.demo.stream;

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import com.ucar.hdfs.lease.demo.util.HdfsConfig;
import org.apache.hadoop.fs.FileSystem; import java.util.concurrent.TimeUnit; public class FileSystemManager { private static final LoadingCache<HdfsConfig, FileSystem> fileSystemCache = CacheBuilder
.newBuilder()
.expireAfterAccess(24, TimeUnit.HOURS)
.build(new CacheLoader<HdfsConfig, FileSystem>() {
@Override
public FileSystem load(HdfsConfig hdfsConfig) throws Exception {
// FileSystem一共有两个get方法,需要调用这个get方法才能支持"一个进程内同时访问多个hadoop集群"
return FileSystem.get(
hdfsConfig.getHdfsUri(),
hdfsConfig.getConfiguration(),
hdfsConfig.getHadoopUser());
}
}); public static FileSystem getFileSystem(HdfsConfig hdfsConfig) {
return fileSystemCache.getUnchecked(hdfsConfig);
}
}
package com.ucar.hdfs.lease.demo.stream;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hdfs.DistributedFileSystem; public class FileStreamToken { private volatile String pathString;
private volatile Path path;
private volatile DistributedFileSystem fileSystem;
private volatile FSDataOutputStream fileStream;
private volatile long lastUpdateTime; public FileStreamToken(String pathString, Path path, DistributedFileSystem fileSystem, FSDataOutputStream fileStream) {
this.pathString = pathString;
this.path = path;
this.fileSystem = fileSystem;
this.fileStream = fileStream;
this.lastUpdateTime = System.currentTimeMillis();
} public String getPathString() {
return pathString;
} public void setPathString(String pathString) {
this.pathString = pathString;
} public Path getPath() {
return path;
} public void setPath(Path path) {
this.path = path;
} public DistributedFileSystem getFileSystem() {
return fileSystem;
} public void setFileSystem(DistributedFileSystem fileSystem) {
this.fileSystem = fileSystem;
} public FSDataOutputStream getFileStream() {
return fileStream;
} public void setFileStream(FSDataOutputStream fileStream) {
this.fileStream = fileStream;
} public long getLastUpdateTime() {
return lastUpdateTime;
} public void setLastUpdateTime(long lastUpdateTime) {
this.lastUpdateTime = lastUpdateTime;
}
}
package com.ucar.hdfs.lease.demo.stream;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit; public class FileStreamKeeper {
private static final Logger logger = LoggerFactory.getLogger(FileStreamKeeper.class);
private static final long CLOSE_CHECK_PERIOD = 60000;// 单位ms
private static final long STREAM_LEISURE_LIMIT = 60000;//单位ms private static ScheduledExecutorService executorService;
private static List<FileStreamHolder> holders = new ArrayList<>(); //定时关闭不用的流
public static void start() {
executorService = Executors.newScheduledThreadPool(1);
executorService.scheduleAtFixedRate(
FileStreamKeeper::leisureCheck,
CLOSE_CHECK_PERIOD,
CLOSE_CHECK_PERIOD,
TimeUnit.MILLISECONDS
);
logger.info("File Stream Keeper is started.");
} public static void closeStreamLocal(String hdfsFilePath) {
if (holders != null && !holders.isEmpty()) {
holders.stream().forEach(h -> {
Set<Map.Entry<String, FileStreamToken>> set = h.getTokens().entrySet();
for (Map.Entry<String, FileStreamToken> entry : set) {
try {
if (hdfsFilePath.equals(entry.getKey())) {
h.close(entry.getKey());
return;
}
} catch (Throwable t) {
logger.error("stream close failed for file : " + entry.getKey());
}
}
});
}
} static synchronized void register(FileStreamHolder fileStreamHolder) {
holders.add(fileStreamHolder);
} static synchronized void unRegister(FileStreamHolder fileStreamHolder) {
holders.remove(fileStreamHolder);
} private static void leisureCheck() {
try {
if (holders != null && !holders.isEmpty()) {
holders.stream().forEach(h -> { logger.info("timer stream close begin.");
Set<Map.Entry<String, FileStreamToken>> set = h.getTokens().entrySet();
for (Map.Entry<String, FileStreamToken> entry : set) {
try {
FileStreamToken vo = entry.getValue();
if (vo.getLastUpdateTime() + STREAM_LEISURE_LIMIT < System.currentTimeMillis()) {
h.close(entry.getKey());//超时关闭
}
} catch (Throwable t) {
logger.error("timer stream close failed for file : " + entry.getKey());
}
}
logger.info("timer stream close end.");
});
}
} catch (Throwable t) {
logger.error("something goes wrong when do leisure check.", t);
}
}
}
package com.ucar.hdfs.lease.demo.stream;

import com.ucar.hdfs.lease.demo.util.FileLockUtils;
import com.ucar.hdfs.lease.demo.util.HdfsConfig;
import org.apache.hadoop.fs.CommonConfigurationKeysPublic;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hdfs.DistributedFileSystem;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock; public class FileStreamHolder { private static final Logger logger = LoggerFactory.getLogger(FileStreamHolder.class); private final Map<String, FileStreamToken> tokens;
private final ReentrantReadWriteLock readWriteLock;
private volatile boolean running; public FileStreamHolder() {
this.tokens = new ConcurrentHashMap<>();
this.readWriteLock = new ReentrantReadWriteLock();
} public void start() {
this.running = true;
FileStreamKeeper.register(this);
logger.info("FileStreamHolder is started.");
} public void close() {
try {
this.readWriteLock.writeLock().lock();
this.running = false;
if (this.tokens.size() > 0) {
this.tokens.keySet().forEach(this::close);
}
} finally {
FileStreamKeeper.unRegister(this);
this.readWriteLock.writeLock().unlock();
}
logger.info("FileStreamHolder is closed.");
} public FileStreamToken getStreamToken(String pathString, HdfsConfig hdfsConfig)
throws Exception {
try {
this.readWriteLock.readLock().lock();
if (!running) {
throw new RuntimeException("FileStreamHolder has closed, StreamToken gotten failed.");
} return getStreamTokenInternal(pathString, hdfsConfig);
} finally {
this.readWriteLock.readLock().unlock();
}
} private FileStreamToken getStreamTokenInternal(String pathString, HdfsConfig hdfsConfig)
throws Exception {
DistributedFileSystem hadoopFS = (DistributedFileSystem) FileSystemManager.getFileSystem(hdfsConfig); ReentrantLock lock = FileLockUtils.getLock(pathString);
try {
lock.lock();
FileStreamToken token = tokens.get(pathString);
if (token == null) {
FSDataOutputStream fileStream;
Path path = new Path(pathString); if (!hadoopFS.exists(path)) {
//create方法最终会调用server端FSNamesystem的startFile方法
fileStream = hadoopFS.create(path, false,
hdfsConfig.getConfiguration().getInt(CommonConfigurationKeysPublic.IO_FILE_BUFFER_SIZE_KEY,
CommonConfigurationKeysPublic.IO_FILE_BUFFER_SIZE_DEFAULT),
(short) 3, 64 * 1024 * 1024L);
logger.info("stream create succeeded for file : " + pathString);
} else {
//append方法最终会调用server端FSNamesystem的appendFile方法
fileStream = hadoopFS.append(path);
logger.info("stream append succeeded for file : " + pathString);
} token = new FileStreamToken(pathString, path, hadoopFS, fileStream);
tokens.put(pathString, token);
} return token;
} finally {
lock.unlock();
}
} public void close(String pathString) {
ReentrantLock lock = FileLockUtils.getLock(pathString);
try {
lock.lock();
FileStreamToken vo = tokens.get(pathString);
if (vo != null) {
try {
vo.getFileStream().close();
logger.info("stream close succeeded for file : " + pathString);
} catch (Throwable e) {
logger.error("stream close failed for file : " + pathString, e);
try {
//流关闭失败的时候,必须执行一下recoverLease方法(即:force recovery)
//出现异常,流肯定不能接着用了,我们也不知道服务端究竟有没有感知到关闭操作
//如果没有感知到close动作,租约一直没有被release,将导致Re-Create问题
vo.getFileSystem().recoverLease(vo.getPath());
logger.info("lease recover succeeded for file : " + pathString);
} catch (Exception ex) {
logger.error("lease recover failed for file : " + pathString, ex);
}
} finally {
//不管有没有异常,我们都需要进行remove
//没有异常,说明流关闭成功(严格意义上讲,没有异常也不代表流关闭成功了,假设第一次关的时候出异常了,没有进行处理,随后再次执行close,就不会报异常,具体可参考流的close方法),正常remove没有问题
//有异常,说明流关闭失败,关了一半儿,流已经有问题了,不能再用了,必须remove掉,不remove的话,后续接着用会报ClosedChannelException异常 /*Caused by: java.nio.channels.ClosedChannelException
at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1622)
at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:104)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
at com.ucar.datalink.writer.hdfs.handle.RdbEventRecordHandler.writeData(RdbEventRecordHandler.java:246)
at com.ucar.datalink.writer.hdfs.handle.RdbEventRecordHandler.doWriteData(RdbEventRecordHandler.java:221)
at com.ucar.datalink.writer.hdfs.handle.RdbEventRecordHandler.toWriteData(RdbEventRecordHandler.java:187)*/
tokens.remove(pathString);
}
}
} finally {
if (lock != null) {
lock.unlock();
}
}
} Map<String, FileStreamToken> getTokens() {
return tokens;
}
}

五、参考资料

http://blog.csdn.net/androidlushangderen/article/details/48012001

https://www.tuicool.com/articles/meuuaqU

https://www.tuicool.com/articles/IJjq6v

http://blog.cloudera.com/blog/2015/02/understanding-hdfs-recovery-processes-part-1/

HDFS租约实践的更多相关文章

  1. Kafka+Storm+HDFS整合实践

    在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...

  2. [转载] Kafka+Storm+HDFS整合实践

    转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...

  3. 暑假第四周总结(HDFS编程实践,安装HBASE)

    本周根据书上以及教程的提示,对HDFS进行了编程实践,将教程所给的代码(判断文件是否存在,创建文件,读取文件)进行了应用,根据视频的讲解,对一些简单的语句有了一定的了解,但还是比较生疏.另外还根据提示 ...

  4. HDFS租约机制

    https://www.cnblogs.com/cssdongl/p/6699919.html

  5. HDFS简单介绍及用C语言訪问HDFS接口操作实践

    一.概述 近年来,大数据技术如火如荼,怎样存储海量数据也成了当今的热点和难点问题,而HDFS分布式文件系统作为Hadoop项目的分布式存储基础,也为HBASE提供数据持久化功能,它在大数据项目中有很广 ...

  6. Zookeeper+Kafka+Storm+HDFS实践

    Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. Hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来 ...

  7. 如何恢复未释放租约的HDFS文件

    之前有文章介绍过HDFS租约带来的问题,导致spark应用无法正常读取文件,只能将异常文件找出并且删除后,任务才能继续执行. 但是删除文件实在是下下策,而且文件本身其实并未损坏,只是因为已经close ...

  8. 对Hadoop分布式文件系统HDFS的操作实践

    原文地址:https://dblab.xmu.edu.cn/blog/290-2/ Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)是Hadoop核 ...

  9. 2019暑假第三周(HDFS和HBase)

    Hadoop的核心是HDFS和MapReduce. 1.分布式文件系统HDFS理论方面的认知学习. 2.HDFS编程实践. 3.分布式数据库HBase.

随机推荐

  1. Less运算和函数

    Less运算和函数   Less运算 在我们的 CSS 中,充斥着大量数值型的 value,比如 color.padding.margin 等.在某些情况下,这些数值之间是有着一定关系的,那么我们怎样 ...

  2. 正则表达式——Java程序员懂你

    正则表达式 关键字:正则表达式,Pattern,Matcher,字符串方法,split,replace 前文书立下了一个flag,这里要把它完成,就是正则表达式,它是一个工具,是很早就存在于标准Uni ...

  3. Spring JDBC(一)jdbcTemplate

    前言 最近工作中经常使用Spring JDBC操作数据库,也断断续续的看了一些源码,便有了写一些总结的想法,希望在能帮助别人的同时,也加深一下自己对Spring JDBC的理解. Spring JDB ...

  4. SpringMVC集成Shiro、读取数据库操作权限

    1.Maven添加Shiro所需的jar包 <dependency> <groupId>org.apache.shiro</groupId> <artifac ...

  5. 使用JSCH框架通过跳转机访问其他节点

    之前搞了套远程访问ssh进行操作的代码,最近有需求,需要通过一台跳转机才能访问目标服务.在网上搜了半天,也没找到比较好的例子,就自己翻阅了下JSCH的API.但是看的云里雾里的.联想了下,端口转发的原 ...

  6. JAVA技术图谱

  7. ESLint 的正式使用感受

    介绍ESLint ESLint 是一个代码规范和错误检查工具,有以下几个特性 所有东西都是可以插拔的.你可以调用任意的rule api或者formatter api 去打包或者定义rule or fo ...

  8. Linux多线程编程详细解析----条件变量 pthread_cond_t

    Linux操作系统下的多线程编程详细解析----条件变量 1.初始化条件变量pthread_cond_init #include <pthread.h> int pthread_cond_ ...

  9. php IP转换整形(ip2long)

    如何将四个字段以点分开的IP网络址协议地址转换成整数呢?PHP里有这么一个函数ip2long.比如 <?php echo ip2long("10.2.1.3"); ?> ...

  10. Linux send和recv

    1.send 函数 int send( SOCKET s, const char FAR *buf, int len, int flags ); 不论是客户还是服务器应用程序都用send函数来向TCP ...