最近用OCR识别身份证,用的tesseract引擎。但是google自带的中文库是在太慢了,尤其是对于性别、民族这样结果可以穷举的特征信息而言,完全可以自己训练字库。自己训练字库不仅可以提高识别速度,而且可以提高识别精度!

在训练过程中,常见的error有以下几种:

1)index >= 0 && index<size_used_:Error:Assert failed in genericvector.h, line 512

原因:
检查一下训练后type 13的数值。如果为0,说明shapetable没有配置进去。
 
2)empty page
原因:版面分析没有做好,没有找到字符。最好手动设置以下版面格式。如:

-psm 7 单行模式
-psm 10 单字符模式
 
3)用的时候找不到语言包

原因:自己训练完的语言数据要放在../tessdata中,因为tesseract源码里把这个文件路径写进环境变量里了!
 
4)fail to load font_properties
原因:有些教程没有加.txt。需要写成font_properties.txt这样的格式。
 
------------------------------训练-------------------------------------------------------------------
1、图片命名规则:lang.fond.exp0.jpg
 
2、生成box文件:
tesseract chi.test.exp0.jpg chi.test.exp0 batch.nochop makebox
 
3、用jTessBoxEditor校正文字
 
4、生成tr文件:
tesseract chi.test.exp0.jpg chi.test.exp0 box.train
 
5、生成unicharset文件:
unicharset_extractor chi.test.exp0.box
 
6、新建字体特征文件
font_properties不含有BOM头,文件内容格式如<fontname> <italic> <bold> <fixed> <serif> <fraktur>  
font_properties 文件内容为test 0 0 0 0 0
 
7、生成shapetable文件
shapeclustering -F font_properties -U unicharset chi.test.exp0.tr
 
8、生成chi.unicharset inttemp文件
mftraining -F font_properties -U unicharset -O chi.unicharset chi.test.exp0.tr
 
9、生成normproto文件
cntraining chi.test.exp0.tr
 
10、合并文件
在inttemp normproto pffmtable shapetable加上前缀chi.
运行combine_tessdata chi.

tesserat训练中文备忘录的更多相关文章

  1. 使用 DL4J 训练中文词向量

    目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实 ...

  2. Tesseract训练中文字体识别

    注:目前仅说明windows下的情况 前言 网上已经有大量的tesseract的识别教程,但是主要有两个缺点: 大多数比较老,有部分内容已经不适用. 大部分只是就英文的训练进行探索,很少针对中文的训练 ...

  3. 使用word2vec训练中文词向量

    https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...

  4. word2vec训练中文模型

    --  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https: ...

  5. Windows下基于python3使用word2vec训练中文维基百科语料(二)

    在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...

  6. Windows下基于python3使用word2vec训练中文维基百科语料(一)

    在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...

  7. 使用Keras训练神经网络备忘录

    小书匠深度学习 文章太长,放个目录: 1.优化函数的选择 2.损失函数的选择 2.2常用的损失函数 2.2自定义函数 2.1实践 2.2将损失函数自定义为网络层 3.模型的保存 3.1同时保持结构和权 ...

  8. Windows下基于python3使用word2vec训练中文维基百科语料(三)

    对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...

  9. 文本分布式表示(二):用tensorflow和word2vec训练词向量

    看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...

随机推荐

  1. webpack 3.X学习之初始构建

    webpack是什么 webpack可以看做是模块打包机:它做的事情是,分析你的项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Sass,TypeScript等),并 ...

  2. Shell脚本数据备份

  3. android sdk manager 国内镜像

    //东软信息学院 mirrors.neusoft.edu.cn 80   //北京化工大学 ubuntu.buct.edu.cn/ubuntu.buct.cn 80   //中国科学院开源协会 mir ...

  4. Vue.js简单的应用

    1:一个简单实现 下面代码部分: <body> <div id="myDiv1"> {{userName}} </div> </body& ...

  5. laravel查看执行sql的

    加个监听就好了~~~~而且很简单 1.在routes.php(api.php\web.php)中添加如下语句 Event::listen('illuminate.query', function($s ...

  6. 实践作业1:测试管理工具实践 Day3

    1.Vertrigoserv启动后,首先要配置apache,则需要修改监听端口,不要出现端口冲突2.配置mysql,在mysql console中输入密码vertrigo3.在浏览器中输入http:/ ...

  7. Linux积累 命令之cat和wc

    cat主要有三大功能: 1.一次显示整个文件. $ cat   filename 2.从键盘创建一个文件. $ cat  >  filename 只能创建新文件,不能编辑已有文件. 3.将几个文 ...

  8. php 将pdf转成图片且将图片拼接

    说明: 1.pdf转图片通过安装php扩展imagick实现. 2.由于windows扩展安装的一系列问题,建议在linux环境开发,windows大伙可以尝试安装. 3.为Centos 安装Imag ...

  9. 过渡与动画 - steps调速函数&CSS值与单位之ch

    写在前面 上一篇中我们熟悉五种内置的缓动曲线和(三次)贝塞尔曲线,并且基于此完成了缓动效果. 但是如果我们想要实现逐帧动画,基于贝塞尔曲线的调速函数就显得有些无能为力了,因为我们并不需要帧与帧之间的过 ...

  10. 浅copy 与 深copy

    import copy names = ["zhangyang", 'guyun', 'xiangpeng', ['jack','tom'], 'xuliangchen'] nam ...