题目链接

Problem Description
Let’s play a game.We add numbers 1,2...n in increasing order from 1 and put them into some sets.
When we add i,we must create a new set, and put iinto it.And meanwhile we have to bring [i-lowbit(i)+1,i-1] from their original sets, and put them into the new set,too.When we put one integer into a set,it costs us one unit physical strength. But bringing integer from old set does not cost any physical strength.
After we add 1,2...n,we have q queries now.There are two different kinds of query:
1 L R:query the cost of strength after we add all of [L,R](1≤L≤R≤n)
2 x:query the units of strength we cost for putting x(1≤x≤n) into some sets.
 
Input
There are several cases,process till end of the input.
For each case,the first line contains two integers n and q.Then q lines follow.Each line contains one query.The form of query has been shown above.
n≤10^18,q≤10^5
 
Output
For each query, please output one line containing your answer for this query
 
Sample Input
10 2
1 8 9
2 6
 
Sample Output
9
2
 
Hint

lowbit(i) =i&(-i).It means the size of the lowest nonzero bits in binary of i. For example, 610=1102, lowbit(6) =102= 210
When we add 8,we should bring [1,7] and 8 into new set.
When we add 9,we should bring [9,8] (empty) and 9 into new set.
So the first answer is 8+1=9.
When we add 6 and 8,we should put 6 into new sets.
So the second answer is 2.

 
题意:每次查询有两种操作
           op1:求加入L~R的数时所消耗的单元
           op2:求将x加入集合或移动到其它集合所消耗的单元(即由x引起消耗的单元)
 
思路:op1:每次加入一个数i 那么会移动[i-lowbit(i)+1 , i-1] ,总的消耗是i-(i-lowbit(i)+1) +1=lowbit(i) 所以每次加入一个数对应的消耗是2的幂次,那么求L~R即可以枚举幂次,即: ans+=(n/(1<<i)-n/(1<<(i+1)))*(1<<i)
                 解释一下,n/(1<<i)-n/(1<<(i+1))表示长为2^i的消耗的数的个数,例如:n=10 , 包含长为2的数是2,6,10 为什么4,8不是,因为它们虽然是2的倍数,但更是4的倍数,包含更长的区间了,所以这部分要减去。
        op2:由树状数组可知 [i-lowbit(i)+1 , i-1] 是以i为根节点对应的区间,如果假如的数能够移动i ,那么这个数对应的孩子区间一定包含i ,所以从x向上一直找父节点即可。
 
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
LL lowbit(LL x)
{
return x&(-x);
}
LL query(LL x,LL n)
{
LL ans=;
while(x<=n)
{
ans++;
x+=lowbit(x);
}
return ans;
}
LL cal(LL x)
{
LL ans=;
LL tmp=;
for(LL i=; tmp<=x; i++)
ans+=(x/(tmp)-x/(tmp<<))*tmp,tmp<<=;
return ans;
}
int main()
{
LL n,q;
while(scanf("%lld%lld",&n,&q)!=EOF)
{
while(q--)
{
int op;
scanf("%d",&op);
if(op==)
{
LL x,y;
scanf("%lld%lld",&x,&y);
LL ans=cal(y)-cal(x-);
printf("%lld\n",ans);
}
else
{
LL x;
scanf("%lld",&x);
LL ans=query(x,n);
printf("%lld\n",ans);
}
}
}
return ;
}
 
 
 
 

hdu 5975---Aninteresting game(树状数组)的更多相关文章

  1. HDU 3333 | Codeforces 703D 树状数组、离散化

    HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333 这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序.这里我们需要离散化 ...

  2. HDU 3333 - Turing Tree (树状数组+离线处理+哈希+贪心)

    题意:给一个数组,每次查询输出区间内不重复数字的和. 这是3xian教主的题. 用前缀和的思想可以轻易求得区间的和,但是对于重复数字这点很难处理.在线很难下手,考虑离线处理. 将所有查询区间从右端点由 ...

  3. HDU 3333 Turing Tree (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3333 题意就是询问区间不同数字的和. 比较经典的树状数组应用. //#pragma comment(l ...

  4. HDU 4325 Flowers(树状数组+离散化)

    http://acm.hdu.edu.cn/showproblem.php?pid=4325 题意:给出n个区间和m个询问,每个询问为一个x,问有多少个区间包含了x. 思路: 因为数据量比较多,所以需 ...

  5. hdu 5775 Bubble Sort 树状数组

    Bubble Sort 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 Description P is a permutation of t ...

  6. HDU - 1541 Stars 【树状数组】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1541 题意 求每个等级的星星有多少个 当前这个星星的左下角 有多少个 星星 它的等级就是多少 和它同一 ...

  7. HDU 3854 Glorious Array(树状数组)

    题意:给一些结点,每个结点是黑色或白色,并有一个权值.定义两个结点之间的距离为两个结点之间结点的最小权值当两个结点异色时,否则距离为无穷大.给出两种操作,一种是将某个结点改变颜色,另一个操作是询问当前 ...

  8. HDU 3874 Necklace (树状数组 | 线段树 的离线处理)

    Necklace Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  9. HDU 5101 Select --离散化+树状数组

    题意:n 组,每组有一些值,求 在不同的两组中每组选一个使值的和大于k的方法数. 解法:n * Cnt[n] <= 1000*100 = 100000, 即最多10^5个人,所以枚举每个值x,求 ...

  10. HDU 3584 Cube --三维树状数组

    题意:给一个三维数组n*n*n,初始都为0,每次有两个操作: 1. 翻转(x1,y1,z1) -> (x2,y2,z2) 0. 查询A[x][y][z] (A为该数组) 解法:树状数组维护操作次 ...

随机推荐

  1. JS获取URL中参数值(QueryString)的4种方法

    方法一:正则法 function getQueryString(name) {    var reg = new RegExp('(^|&)' + name + '=([^&]*)(& ...

  2. [Oracle]Audit(二)--清理Audit数据

    在上一篇,初步了解了Audit的作用以及如何使用Audit,本篇记录如何手动清理Audit数据. (一) 概述 Audit的数据主要存储在sys.aud$表中,该表默认位于system表空间中,我们根 ...

  3. windows平台把UliPad添加到右键菜单

    对.py文件支持右键用UliPad打开方式支持: 1.打开注册表(win+R,运行框输入regedit) 2.先对*.py文件进行设置.找到注册表目录HKEY_CLASSES_ROOT\Python. ...

  4. lua table表

    lua table表 语法结构 创建一个 table 直接使用 "{}" 即可 table1 = {} -- 赋值 table1["name"] = " ...

  5. stm32中断学习总结

    经过了两天,终于差不多能看懂32的中断了,由于是用的库函数操作的,所以有些内部知识并没有求甚解,只是理解知道是这样的.但对于要做简单开发的我来说这些已经够了. 我学习喜欢从一个例程来看,下面的程序是我 ...

  6. Python之路- 反射&定制自己的数据类型

    一.isinstance和issubclass isinstance(obj,cls)检查是否obj是否是类 cls 的对象 issubclass(sub, super)检查sub类是否是 super ...

  7. Linq 查询与普通查询的区别

    普通:select * --1 from User(表名) as u --2 where u.Name like '%s%' --3 Linq : from User(表名) as u --1 whe ...

  8. 使用 rsync 同步

    原文地址 http://www.howtocn.org/rsync:use_rsync 选项 说明 -a, ––archive 归档模式,表示以递归方式传输文件,并保持所有文件属性,等价于 -rlpt ...

  9. Failed to read artifact descriptor for xxx:jar 的Maven项目jar包依赖配置的问题解决

    在开发的过程中,尤其是新手,我们经常遇到Maven下载依赖jar包的问题,也就是遇到“Failed to read artifact descriptor for xxx:jar”的错误. 对于这种非 ...

  10. 接上一篇中记录Echarts进度环使用【不同状态不同进度环颜色及圈内文字】--采用单实例业务进行说明

    接上一篇中记录Echarts进度环使用 此处处理不同状态下不同进度环颜色及圈内文字等的相关处理,采用实际案例源码说明 -----------------偶是华丽丽分割线---------------- ...