I want to consider an approach of forecasting I really like and frequently use. It allows to include the promo campaigns (or another activities and other variables as well) effect into the prediction of total amount. I will use a fictitious example and data in this post, but it works really good with my real data.  So, you can adapt this algorithm for your requirements and test it. Also, it seems simple for non-math people because ofcomplete automation.

Suppose we sell some service and our business depends on the number of subscribers we attract. Definitely, we measure the number of customers and want to predict their quantity. If we know the customer’s life time value (CLV) it allows us to predict the total revenue based on quantity of customers and CLV. So, this case looks like justified.

The first way we can use for solving this problem is multiple regression. We can find a great number of relevant indicators which influence the number of subscribers. It can be service price, seasonality, promotional activities, even S&P or Dow Jones index, etc. After we found all parameters affecting number of customers we can calculate formula and predict number of customers.

This approach has disadvantages:

  • we should collect all these indicators in one place and have historical data of all of them,
  • they should be measured at the same time intervals,
  • most importantly, we should predict all of these indicators as well. If our customers buy several different packages of our service and for different periods, even our average price doesn’t look like it can be easily predicted (not mentioning S&P index). If we use predicted indicators, their prediction errors will affect the final prediction as well.

On the other hand, stock market analysts use time-series forecasting. They are resigned by the fact that stock prices are influenced by a great number of indicators. Thus, they are looking for dependence inside the price curve. This approach is not fully suitable for us too. In case we regularly attracted extra customers via promos (we can see some peaks on curve) the time-series algorithms can identify peaks as seasonality and draw future curve with the same peaks, but what we can do if we are not planning promos in these periods or we are going to make extra promos or change their intensity.

And final statement before we start working on our prediction algorithm. I’m sure it is important for marketers to see how their promos or activities affect the number of customers / revenue (or subscribers in our case).

So, our task is to create the model which doesn’t depend on a great number of predictors from one side (looks like time-series forecasting) and on the other side includes promos effect on total number of subscribers from the other side (looks like regression).

My answer is extended ARIMA model. ARIMA is Auto Regression Integrated Moving Average. “Extended” means we can include some other information in time-series forecasting based on ARIMA model. In our case, other information is the result of promos we had and we are going to get in the future. In case we repeat promo campaigns every year at the same period and get approximately the same number of new customers ARIMA model (not extended) would be enough. It should recognize peaks as a seasonality. This example we won’t review.

Let’s start. Suppose our data is:

We have (from the left to the right):

  • # of period,
  • year,
  • month,
  • number of subscribers,
  • monthly growth (difference between number of subscribers in the next month and number of subscribers in the previous month),
  • extended (sum of promos effect),
  • several types of promo campaigns which affected the number of customers (promo1, promo2, etc.). Also, you can see that some subscribers from particular promo are gone (negative number). When we run some special low pricing promos we realize that part of these customers won’t extend their subscriptions. So, this is the example which includes negative effect of promo campaigns as well.

We need only two variables to make the prediction (‘growth’ and ‘extended’). There are other variables just for your information. Also we have two last months without number of subscribers (we are going to predict these values), but we should have promos effect which we are planning to get in future. Further, the heat-map of growth and extended variables look alike. Thus, we can make conclusion that they are connected.

In the example we will predict values from the 37th to the 42nd to see accuracy of prediction on factual data.

The code in R can be the next:

#load libraries
library(forecast)
library(TSA)
#load data set
df <- read.csv(file='data.csv')
#define periods (convenient for future, you can just change values for period you want to predict or include to factual)
s.date <- c(2010,1) #start date - factual
e.date <- c(2011,12) #end date - factual
f.s.date <- c(2013,1) #start date - prediction
f.e.date <- c(2013,12) #end date - prediction #transform values to time-series and define past and future periods
growth <- ts(df$Growth, start=s.date, end=e.date, frequency=12)
ext <- ts(df$Extended, start=s.date, end=f.e.date, frequency=12)
past <- window(ext, s.date, e.date)
future <- window(ext, f.s.date, f.e.date)
#ARIMA model
fit <- auto.arima(growth, xreg=past, stepwise=FALSE, approximation=FALSE) #determine model
forecast <- forecast(fit, xreg=future) #make prediction
plot(forecast) #plot chart
summary(forecast) #print predicted values

We should get chart and values:

As you remember we have factual data for Jan.2013-Apr.2013 which we can compare: 384 vs 451, 1224 vs 1271, 709 vs 796 and 699 vs 753. Although values are not very close, we can see that February promo affected and we saw a peak. After we add Jan.2013-Mar.2013 to factual periods, our prediction for April will be 718 which is closer to 699 than 753. That means once we have factual data we should recalculate and precise the prediction.

Thus, we have predicted number of subscribers including promo campaigns effect. If we are not satisfied with this number we can add some activity and measure new prediction. Suppose we add new activity for attracting 523 new customers in April 2013 (this means Extended will be 500 instead of -23). In this case our prediction will be:

We got the new peak 1295 in April instead of 753 (in previous prediction). Thus, we have tool for targeting number of subscribers, the only thing we need is to attract these subscribers which we are going to use for prediction ;).

Note, for making prediction for more periods just add values of extended variable in the initial data and change prediction period in the R code.

In case when described approach works poorly I can recommend you this great book written by ‘forecast’ package creator prof. Rob J Hyndman to deepen into forecasting.

Have an accurate predictions!

转自:http://analyzecore.com/2014/06/27/include-promo-effect-into-prediction/

Include promo/activity effect into the prediction (extended ARIMA model with R)的更多相关文章

  1. Module中引用Module中的Activity时报错了,错误是找不到R文件中的id引用

    1.好像库modul和主modul不能有相同名字和layout文件 2.资源文件名冲突导致的

  2. STATS 326 Applied Time Series

    STATS 326Applied Time SeriesASSIGNMENT THREEDue: 2 May 2019, 11.00 am(Worth 6% of your final grade)H ...

  3. Android官方文档翻译 十七 4.1Starting an Activity

    Starting an Activity 开启一个Activity This lesson teaches you to 这节课教给你 Understand the Lifecycle Callbac ...

  4. Android布局优化之include、merge、ViewStub的使用

    本文针对include.merge.ViewStub三个标签如何在布局复用.有效减少布局层级以及如何可以按需加载三个方面进行介绍的. 复用布局可以帮助我们创建一些可以重复使用的复杂布局.这种方式也意味 ...

  5. Android窗口管理服务WindowManagerService显示Activity组件的启动窗口(Starting Window)的过程分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8577789 在Android系统中,Activ ...

  6. 【转】关于Activity和Task的设计思路和方法

    Activity和Task是Android Application Framework架构中最基础的应用,开发者必须清楚它们的用法和一些开发技巧.本文用大量的篇幅并通过引用实例的方式一步步深入全面讲解 ...

  7. uva 1560 - Extended Lights Out(枚举 | 高斯消元)

    题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5∗6的矩阵,每一个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,假设按了这个位置的开关,将会导致周围包含自 ...

  8. Android布局优化之ViewStub、include、merge使用与源码分析

    在开发中UI布局是我们都会遇到的问题,随着UI越来越多,布局的重复性.复杂度也会随之增长.Android官方给了几个优化的方法,但是网络上的资料基本上都是对官方资料的翻译,这些资料都特别的简单,经常会 ...

  9. android布局中使用include及需注意点

    在android布局中,使用include,将另一个xml文件引入,可作为布局的一部分,但在使用include时,需注意以下问题: 一.使用include引入 如现有标题栏布局block_header ...

随机推荐

  1. Entity Framework快速入门--ModelFirst

    Entity Framework带给我们的不仅仅是操作上的方便,而且使用上也很是考虑了用户的友好交互,EF4.0与vs2010的完美融合也是我们选择它的一个理由吧.相比Nhibernate微软这方面做 ...

  2. 跟着刚哥梳理java知识点——基本数据类型(三)

    1.8种基本数据类型 1)4种整数类型(byte.short.int.long) [知识点] 类型 存储空间 数值范围 byte 1字节=8位 -128-127 short 2字节 -2的15次方-2 ...

  3. 自动生成数学题型一 (框架Struts2) 题型如(a+b=c)

    1. 加减乘除 1.1 随机生成制定范围的整数 /** * 随机产生一个被限定范围的整数 * * @param num1 * 定义起始范围 num1 * @param num2 * 定义终止范围 nu ...

  4. 使用Java注解来简化你的代码

         注解(Annotation)就是一种标签,可以插入到源代码中,我们的编译器可以对他们进行逻辑判断,或者我们可以自己写一个工具方法来读取我们源代码中的注解信息,从而实现某种操作.需要申明一点, ...

  5. JavaEE开发之SpringMVC中的自定义拦截器及异常处理

    上篇博客我们聊了<JavaEE开发之SpringMVC中的路由配置及参数传递详解>,本篇博客我们就聊一下自定义拦截器的实现.以及使用ModelAndView对象将Controller的值加 ...

  6. CSS新内容

     margin 外边距                                 * margin  属性值最多有4个                 * ① 只写一个值:四个方向的margin ...

  7. CF #335 div1 A. Sorting Railway Cars

    题目链接:http://codeforces.com/contest/605/problem/A 大意是对一个排列进行排序,每一次操作可以将一个数字从原来位置抽出放到开头或结尾,问最少需要操作多少次可 ...

  8. JQuery事件与动画总结

    1.加载DOM 1.1.window事件 window.onload=function(){}.... 时机:其他资源都加载完毕后,再执行 $(function(){}) ……:只是等待标签完毕,即可 ...

  9. mysql行列转换方法总结

    这是一道行转列并且构造交叉表的问题: http://topic.csdn.net/u/20090530/23/0b782674-4b0b-4cf5-bc1a-e8914aaee5ab.html 数据样 ...

  10. 蓝桥杯-土地测量-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...