东北育才 DAY2组合数取mod (comb)
组合数取模(comb)
【问题描述】
计算C(m,n)mod 9901的值
【输入格式】
从文件comb.in中输入数据。
输入的第一行包含两个整数,m和n
【输出格式】
输出到文件comb.out中。
输出一行,一个整数
【样例输入】
2 1
【样例输出】
2
【数据规模与约定】
对于 20%的数据,n<=m<=20
对于 40%的数据,n<=m<=2000
对于 100%的数据,n<=m<=20000
这道题描述很清楚,有很多种做法,第一题还是挺水的,而且很多网站上也有
自己比较懒,因为摸的数很小,写了一个半打表半lucas。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int C[][];
int main()
{
int i,j;
int n,m;
cin>>n>>m;
for(i=;i<=;i++)
{
C[i][i]=;
C[i][]=;
C[i][]=;
}
for(i=;i<=;i++)
{
for(j=;j<=i;j++)
{
C[i][j]=((C[i-][j-])%+(C[i-][j])%)%;
}
}
int ans=;
ans=(C[n/][m/]*C[n%][m%])%;
cout<<ans;
}
还有一种是直接lucas..
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
LL n,m,p;
LL quick_mod(LL a, LL b)
{
LL ans=;
a%=p;
while(b)
{
if(b&)
{
ans=ans*a%p;
b--;
}
b>>=;
a=a*a%p;
}
return ans;
}
LL C(LL n, LL m)
{
if(m>n)
return ;
LL ans=;
for(int i=; i<=m; i++)
{
LL a=(n+i-m)%p;
LL b=i%p;
ans=ans*(a*quick_mod(b,p-)%p)%p;
}
return ans;
}
LL Lucas(LL n, LL m)
{
if(m == )
return ;
return C(n%p,m%p)*Lucas(n/p,m/p)%p;
}
int main()
{
scanf("%lld%lld", &n, &m);
p=;
printf("%lld\n", Lucas(n,m));
return ;
}
还有一种是直接打表..这里发一下我旁边dalao写的程序
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
int C[20039]={0};
int main()
{
C[0]=1;
int m,n,a=1,b,stp,STP,MOD=9901;
scanf("%d%d",&m,&n);
while(a<=m)
{
stp=C[0];
for(b=1;b<=a;b++)
{
STP=C[b];
C[b]=stp+C[b];
C[b]%=MOD;
stp=STP;
}
a++;
}
printf("%d",C[n]);
}
东北育才 DAY2组合数取mod (comb)的更多相关文章
- 组合数取mod
组合数取mod 条件mod是质数,inv 是逆元,fac是阶层: 用于n在10^5左右 maxn=100505: ll fact[maxn],inv[maxn]; ll Pow(ll x,ll n){ ...
- Uva12034 (组合数取模)
题意:两匹马比赛有三种比赛结果,n匹马比赛的所有可能结果总数 解法: 设答案是f[n],则假设第一名有i个人,有C(n,i)种可能,接下来还有f(n-i)种可能性,因此答案为 ΣC(n,i)f(n-i ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- lucas定理解决大组合数取模
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
随机推荐
- CSS vertical-align属性
之前也经常用到vertical-align进行垂直居中对齐,突然发现其中的一些属性值根本就没使用过,也不清楚效果,将今天的研究成果记录下. vertical-align 属性 下表是w3c上列举的属性 ...
- JavaScript中var变量引用function与直接声明function
今天在h5开发app的过程中遇到了一个js问题,function的执行问题 在js中声明函数function有这两种方法 var A=function(){...} 或者 function A(){. ...
- JavaFx自定义Tab-Order
title: JavaFx自定义Tab-Order Tab-order是什么?在界面上当你按tab键触发焦点转移的功能,这就是tab order.但是Javafx有个缺陷就是不方便自己设置tab-or ...
- 微信公众号开发笔记2(nodejs)
本篇主要记录调用微信各种api和功能实现 一.始于access_token 无论调用微信的什么api,都需要一个查询参数,就是我们每隔1小时或者2小时获取的access_token,笔记1中已经保证了 ...
- O(mn)实现LCIS
序: LCIS即求两序列的最长公共不下降子序列.思路于LCS基本一致. 用dp[i][j]记录当前最大值. 代码实现: /* About: LCIS O(mn) Auther: kongse_qi D ...
- python3 selenium 切换窗口的几种方法
第一种方法: 使用场景: 打开多个窗口,需要定位到新打开的窗口 使用方法: # 获取打开的多个窗口句柄windows = driver.window_handles# 切换到当前最新打开的窗口driv ...
- SQL SERVER大话存储结构(2)_非聚集索引如何查找到行记录
如果转载,请注明博文来源: www.cnblogs.com/xinysu/ ,版权归 博客园 苏家小萝卜 所有.望各位支持! 1 行记录如何存储 这里引入两个 ...
- LeetCode 题解(一):Two Sum
LeetCode : two sum 第一次写博客,算是熟悉这些编辑环境吧,本来是打算在csdn上用markdown写的,结果改了博客介绍就被关闭了,晕死...好了,话不多说,今天打算拿LeetCod ...
- VR全景加盟、720全景、VR全景技术平台-全国招商模式疯狂开始
VR全景:互联网与实体店的完美结合 VR元年已过,VR项目.VR创业潮转为理性,VR行业分为两个方向:硬件和内容.硬件又分为VR头显和辅助设备,内容又分为VR全景和VR虚拟内容,如游戏.娱乐.根据行 ...
- java图片上传(mvc)
最近有开始学起了java,好久没写文章了,好久没来博客园了.最近看了看博客园上次写的图片上传有很多人看,今天在一些篇关于java图片上传的.后台接收用的是mvc.不墨迹了,直接上图. 先看目录结构.i ...