HDU 4010 Query on The Trees
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially.
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000)
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation.
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one.
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts.
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w.
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it.
You should output a blank line after each test case.
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
-1
7
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 300001
using namespace std; int p,ca,f;
inline int read(){
p=;ca=getchar();f=;
while(ca<''||ca>'') {if (ca=='-') f=-;ca=getchar();}
while(ca>=''&&ca<='') p=p*+ca-,ca=getchar();
return p*f;
}
struct na{
int y,ne;
}b[MN*];
int fa[MN],n,m,x,y,ch[MN][],top,st[MN],key[MN],ma[MN],c[MN],l[MN],r[MN],num;
bool rev[MN];
inline int max(int a,int b){return a>b?a:b;}
inline bool isroot(int x){
return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;
}
inline void pu(int x,int w){
if (!x) return;
c[x]+=w;key[x]+=w;ma[x]+=w;
}
inline void pd(int x){
if (c[x]){
pu(ch[x][],c[x]);pu(ch[x][],c[x]);
c[x]=;
}
if (rev[x]){
rev[x]=;rev[ch[x][]]^=;rev[ch[x][]]^=;
swap(ch[x][],ch[x][]);
}
}
inline void up(int x){
pd(x);pd(ch[x][]);pd(ch[x][]);
ma[x]=max(max(ma[ch[x][]],ma[ch[x][]]),key[x]);
}
inline void rot(int x){
int y=fa[x],kind=ch[y][]==x;
if(!isroot(y)) ch[fa[y]][ch[fa[y]][]==y]=x;
fa[x]=fa[y];
fa[y]=x;
ch[y][kind]=ch[x][!kind];
fa[ch[y][kind]]=y;
ch[x][!kind]=y;
up(y);up(x);
}
inline void splay(int x){
register int i;top=;st[]=x;
for (i=x;!isroot(i);i=fa[i]) st[++top]=fa[i];
for (i=top;i;i--) up(st[i]);
while(!isroot(x)){
if (isroot(fa[x])) rot(x);else
if ((ch[fa[fa[x]]][]==fa[x])==(ch[fa[x]][]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
}
}
inline void acc(int u){
int x=;
while(u){
splay(u);
ch[u][]=x;
u=fa[x=u];
}
}
inline int find(int x){
acc(x);splay(x);
while(ch[x][]) x=ch[x][];
return x;
}
inline bool qu(int x,int y){
if (find(x)==find(y)) return ;else return ;
}
inline void re(int x){
acc(x);splay(x);rev[x]^=;
}
inline void in(int x,int y){
if (qu(x,y)){printf("-1\n");return;}
re(x);acc(y);
ch[y][]=x;fa[x]=y;
}
inline void del(int x,int y){
if (!qu(x,y)||x==y){printf("-1\n");return;}
re(x);acc(y);splay(y);ch[y][]=fa[ch[y][]]=;
}
inline void change(int x,int y,int w){
if (!qu(x,y)){printf("-1\n");return;}
re(x);acc(y);splay(y);pu(y,w);
}
inline int que(int x,int y){
if (!qu(x,y)) return -;
re(x);acc(y);splay(y);
return ma[y];
}
inline void inl(int x,int y){
num++;
if (!l[x]) l[x]=num;else b[r[x]].ne=num;
b[num].y=y;b[num].ne=;r[x]=num;
}
inline void dfs(int x){
for (int i=l[x];i;i=b[i].ne)
if (!fa[b[i].y]){
fa[b[i].y]=x;
dfs(b[i].y);
}
}
int o;
int main(){
register int i;
ma[]=-1e9;
while(scanf("%d",&n)!=EOF){
num=;
memset(fa,,sizeof(fa));
memset(ch,,sizeof(ch));
memset(c,,sizeof(c));
memset(l,,sizeof(l));
memset(rev,,sizeof(rev));
for (i=;i<n;i++){
x=read();y=read();
inl(x,y);
inl(y,x);
}
for(i=;i<=n;i++) ma[i]=key[i]=read();
fa[]=;
dfs();
fa[]=;
m=read();
while(m--){
o=read();
int x,y,z;x=read();y=read();
if (o==) in(x,y);else
if (o==) del(x,y);else
if (o==) z=read(),change(y,z,x);else
printf("%d\n",que(x,y));
}
printf("\n");
}
}
HDU 4010 Query on The Trees的更多相关文章
- 动态树(LCT):HDU 4010 Query on The Trees
Query on The Trees Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Othe ...
- HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...
- HDU 4010 Query on The Trees(动态树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...
- HDU 4010 Query on The Trees(动态树LCT)
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- HDU 4010.Query on The Trees 解题报告
题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...
- HDU 4010 Query on The Trees(动态树)
题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...
- hdu 4010 Query on The Trees LCT
支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...
- HDOJ 4010 Query on The Trees LCT
LCT: 分割.合并子树,路径上全部点的点权添加一个值,查询路径上点权的最大值 Query on The Trees Time Limit: 10000/5000 MS (Java/Others) ...
- HDU 5957 Query on a graph
HDU 5957 Query on a graph 2016ACM/ICPC亚洲区沈阳站 题意 \(N(N \le 10^5)\)个点,\(N\)条边的连通图. 有\(M \le 10^5\)操作: ...
随机推荐
- spring mvc报错,数据库查询无限死循环
进行查询的陷入了无限死循环,原因是问题类中包含了回答,回答类中包含了问题,进入了无限死循环 解决方法:在回答类中的问题类属性上加注解:@JsonBackReference 问题中有回答的set集合,回 ...
- 无 new 构造与链式调用
无 new 构造 最简单的想法 (function(window) { var jQuery = function() { return new _jQuery(); }; var _jQuery = ...
- VisualVM 分析full GC问题记录
背景:JAVA APP,主要功能是处理日志并存入db 现象:运行一段时间就出现OOM问题,查看GC log发现运行没多久就一直Full GC,并且抛出OOM的异常. [Full GC (Ergonom ...
- Java8函数之旅 (五) -- Java8中的排序
前言 对数据进行排序是平常经常会用到的操作之一,使用Jav8排序可以减少你在排序这方面的代码量,优化你的代码. 测试用例代码 定义个实体类User,拥有姓名name,年龄age,积分credit ...
- bzoj 4872: [Shoi2017]分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- bzoj 3932: [CQOI2015]任务查询系统
Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...
- JS画图之七【时钟】
样例:http://www.zhaojz.com.cn/demo/draw12.html 依赖:圆 一.定义对象:针 //定义钟表指针 //dotClock 原点 //len 指针长度 functio ...
- js代码细嚼慢咽
全局变量的梗 例1: 对于var 的理解:将该变量声明在当前的作用域中,或者说执行上下文中. function add() { result = 3; //result变量即是隐喻全局变量 } add ...
- css清除浮动主要方法
1.浮动元素尾部添加空div标签,设置css为clear:both: 缺点:如果页面浮动布局多,则需要添加较多div: 2.父级元素定义伪类:after和zoom:1: .father:after{d ...
- vue有关小知识
截取链接参数: //截取链接参数 this.id = this.$route.query.id;