Problem Description
We have met so many problems on the tree, so today we will have a query problem on a set of trees. 
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!

 
Input
There are multiple test cases in our dataset. 
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially. 
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000) 
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation. 
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one. 
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts. 
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w. 
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it. 
 
Output
For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1. 
You should output a blank line after each test case.
 
Sample Input
5
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
 
Sample Output
3
-1
7
 
LCT模板
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 300001
using namespace std; int p,ca,f;
inline int read(){
p=;ca=getchar();f=;
while(ca<''||ca>'') {if (ca=='-') f=-;ca=getchar();}
while(ca>=''&&ca<='') p=p*+ca-,ca=getchar();
return p*f;
}
struct na{
int y,ne;
}b[MN*];
int fa[MN],n,m,x,y,ch[MN][],top,st[MN],key[MN],ma[MN],c[MN],l[MN],r[MN],num;
bool rev[MN];
inline int max(int a,int b){return a>b?a:b;}
inline bool isroot(int x){
return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;
}
inline void pu(int x,int w){
if (!x) return;
c[x]+=w;key[x]+=w;ma[x]+=w;
}
inline void pd(int x){
if (c[x]){
pu(ch[x][],c[x]);pu(ch[x][],c[x]);
c[x]=;
}
if (rev[x]){
rev[x]=;rev[ch[x][]]^=;rev[ch[x][]]^=;
swap(ch[x][],ch[x][]);
}
}
inline void up(int x){
pd(x);pd(ch[x][]);pd(ch[x][]);
ma[x]=max(max(ma[ch[x][]],ma[ch[x][]]),key[x]);
}
inline void rot(int x){
int y=fa[x],kind=ch[y][]==x;
if(!isroot(y)) ch[fa[y]][ch[fa[y]][]==y]=x;
fa[x]=fa[y];
fa[y]=x;
ch[y][kind]=ch[x][!kind];
fa[ch[y][kind]]=y;
ch[x][!kind]=y;
up(y);up(x);
}
inline void splay(int x){
register int i;top=;st[]=x;
for (i=x;!isroot(i);i=fa[i]) st[++top]=fa[i];
for (i=top;i;i--) up(st[i]);
while(!isroot(x)){
if (isroot(fa[x])) rot(x);else
if ((ch[fa[fa[x]]][]==fa[x])==(ch[fa[x]][]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
}
}
inline void acc(int u){
int x=;
while(u){
splay(u);
ch[u][]=x;
u=fa[x=u];
}
}
inline int find(int x){
acc(x);splay(x);
while(ch[x][]) x=ch[x][];
return x;
}
inline bool qu(int x,int y){
if (find(x)==find(y)) return ;else return ;
}
inline void re(int x){
acc(x);splay(x);rev[x]^=;
}
inline void in(int x,int y){
if (qu(x,y)){printf("-1\n");return;}
re(x);acc(y);
ch[y][]=x;fa[x]=y;
}
inline void del(int x,int y){
if (!qu(x,y)||x==y){printf("-1\n");return;}
re(x);acc(y);splay(y);ch[y][]=fa[ch[y][]]=;
}
inline void change(int x,int y,int w){
if (!qu(x,y)){printf("-1\n");return;}
re(x);acc(y);splay(y);pu(y,w);
}
inline int que(int x,int y){
if (!qu(x,y)) return -;
re(x);acc(y);splay(y);
return ma[y];
}
inline void inl(int x,int y){
num++;
if (!l[x]) l[x]=num;else b[r[x]].ne=num;
b[num].y=y;b[num].ne=;r[x]=num;
}
inline void dfs(int x){
for (int i=l[x];i;i=b[i].ne)
if (!fa[b[i].y]){
fa[b[i].y]=x;
dfs(b[i].y);
}
}
int o;
int main(){
register int i;
ma[]=-1e9;
while(scanf("%d",&n)!=EOF){
num=;
memset(fa,,sizeof(fa));
memset(ch,,sizeof(ch));
memset(c,,sizeof(c));
memset(l,,sizeof(l));
memset(rev,,sizeof(rev));
for (i=;i<n;i++){
x=read();y=read();
inl(x,y);
inl(y,x);
}
for(i=;i<=n;i++) ma[i]=key[i]=read();
fa[]=;
dfs();
fa[]=;
m=read();
while(m--){
o=read();
int x,y,z;x=read();y=read();
if (o==) in(x,y);else
if (o==) del(x,y);else
if (o==) z=read(),change(y,z,x);else
printf("%d\n",que(x,y));
}
printf("\n");
}
}

HDU 4010 Query on The Trees的更多相关文章

  1. 动态树(LCT):HDU 4010 Query on The Trees

    Query on The Trees Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Othe ...

  2. HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...

  3. HDU 4010 Query on The Trees(动态树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...

  4. HDU 4010 Query on The Trees(动态树LCT)

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  5. HDU 4010.Query on The Trees 解题报告

    题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...

  6. HDU 4010 Query on The Trees(动态树)

    题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...

  7. hdu 4010 Query on The Trees LCT

    支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...

  8. HDOJ 4010 Query on The Trees LCT

    LCT: 分割.合并子树,路径上全部点的点权添加一个值,查询路径上点权的最大值 Query on The Trees Time Limit: 10000/5000 MS (Java/Others)   ...

  9. HDU 5957 Query on a graph

    HDU 5957 Query on a graph 2016ACM/ICPC亚洲区沈阳站 题意 \(N(N \le 10^5)\)个点,\(N\)条边的连通图. 有\(M \le 10^5\)操作: ...

随机推荐

  1. iOS框架搭建(MVC,自定义TabBar)--微博搭建为例

    项目搭建 1.新建一个微博的项目,去掉屏幕旋转 2.设置屏幕方向-->只有竖向 3.使用代码构建UI,不使用storyboard 4.配置图标AppIcon和LaunchImage 将微博资料的 ...

  2. 网口划VLAN

    do sho run int g0/28 int g0/18 sw mo acc sw acc vlan 220 span portfa exit do wr exit

  3. xamarin Android activity生命周期详解

    学Xamarin我为什么要写这样一篇关于Android 的activity生命周期的文章 已经学Xamarin android有一段时间了,现在想起当初Xamarin也走了不少的弯路.当然Xamari ...

  4. c#$用法

    为什么会出现$符号,c#6.0才出现的新特性 var s = string.Fromat("{0}+{1}={2}",12,23,12+23) 用起来必须输入string.From ...

  5. bzoj 2727: [HNOI2012]双十字

    Description 在C 部落,双十字是非常重要的一个部落标志.所谓双十字,如下面两个例子,由两条水平的和一条竖直的"1"线段组成,要求满足以下几个限制: 我们可以找到 5 个 ...

  6. Qt仿win7自动顶部最大化左侧右侧半屏效果

    Win7系统不得不说是非常好用的,也是目前为止占用份额最大的操作系统,其中win7有个效果,将窗体拖动到顶部时会自动最大化,拖动到左侧右侧时会自动半屏显示,再次拖动窗体到其他位置,会重新恢复之前的大小 ...

  7. Django__RBAC

    RBAC : 基于角色的权限访问控制(Role-Based Access Control) RBAC 模型作为目前最为广泛接受的权限模型 角色访问控制(RBAC)引入了Role的概念,目的是为了隔离U ...

  8. C#保留2位小数的做法

    第一 算法实现           保留两位的话,就用一个浮点型先乘以100,然后取整,取整完了之后,再乘以1.0,然后再除以100.          上面这种做法是保留n位,不会四舍五入的.因为这 ...

  9. Zabbix Agent端配置文件说明

    Zabbix Agent端配置文件说明 由于工作中经常接触到zabbix,所以将agent配置整理一下,方便日常查看. # This is a config file for the Zabbix a ...

  10. Java笔记:字符串详解

    字符串详解 更新时间:2018-1-6 21:20:39 String 字符串创建 String str1="ABC";//推荐使用 String str2 = new Strin ...