贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础。它的主要意义在于无论是直线或曲线都能在数学上予以描述。

上一节讲的是高次方程曲线,其实贝塞尔曲线就是高次函数曲线.研究贝塞尔曲线的人最初是按照已知曲线参数方程来确定四个点的思路设计出这种矢量曲线绘制法。涕淌为了向大家 介绍贝塞尔曲线的公式,也故意把问题的已知和所求颠倒了一下位置:如果已知一条曲线的参数方程,系数都已知,并且两个方程里都含有一个参数t,它的值介于 0、1之间,表现形式如下所示:

      x(t) = ax * t ^ 3 + bx * t ^ 2 + cx * t + x0
      y(t) = ay * t ^ 3 + by * t ^ 2 + cy * t + y0

由N个顶点控制的贝塞尔曲线,是N-1次的函数方程构成.

二次方贝塞尔曲线

二次方贝塞尔曲线的路径由给定点P0P1P2的函数Bt):

三次方贝塞尔曲线

      P0P1P2P3四个点在平面或在三维空间中定义了三次方贝塞尔曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1P2;这两个点只是在那里提供方向资讯。P0P1之间的间距,决定了曲线在转而趋进P3之前,走向P2方向的“长度有多长”。

阶贝塞尔曲线可如下推断:

给定点P0P1、…、Pn,其贝塞尔曲线即

相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815

如下是我写的贝塞尔曲线的脚本代码与截图,代码中的控制顶点坐标为随机数生成.

二次方贝塞尔曲线:

vertices = 

t = from  to 

ax = rand2(-, )
ay = rand2(-, )
bx = rand2(-, )
by = rand2(-, )
cx = rand2(-, )
cy = rand2(-, ) a1 = (-t)*(-t)
a2 = *t*(-t)
a3 = t*t x = a1*ax+a2*bx+a3*cx
y = a1*ay+a2*by+a3*cy

三次方贝塞尔曲线:

vertices = 

t = from  to 

ax = rand2(-, )
ay = rand2(-, )
bx = rand2(-, )
by = rand2(-, )
cx = rand2(-, )
cy = rand2(-, )
dx = rand2(-, )
dy = rand2(-, ) a1 = pow((-t),)
a2 = pow((-t),)**t
a3 = *t*t*(-t)
a4 = t*t*t x = a1*ax+a2*bx+a3*cx+a4*dx;
y = a1*ay+a2*by+a3*cy+a4*dy;

四次方贝塞尔曲线:

vertices = 

t = from  to 

ax = rand2(-, )
ay = rand2(-, )
bx = rand2(-, )
by = rand2(-, )
cx = rand2(-, )
cy = rand2(-, )
dx = rand2(-, )
dy = rand2(-, )
ex = rand2(-, )
ey = rand2(-, ) t2 = pow(t,)
t3 = pow(t,)
t4 = pow(t,) w = -t
w2 = pow(w,)
w3 = pow(w,)
w4 = pow(w,) a1 = w4
a2 = *w3*t
a3 = *w2*t2
a4 = *w*t3
a5 = t4 x = a1*ax+a2*bx+a3*cx+a4*dx+a5*ex;
y = a1*ay+a2*by+a3*cy+a4*dy+a5*ex;

五次方贝塞尔曲线:

vertices = 

t = from  to 

ax = rand2(-, )
ay = rand2(-, )
bx = rand2(-, )
by = rand2(-, )
cx = rand2(-, )
cy = rand2(-, )
dx = rand2(-, )
dy = rand2(-, )
ex = rand2(-, )
ey = rand2(-, )
fx = rand2(-, )
fy = rand2(-, ) t2 = pow(t,)
t3 = pow(t,)
t4 = pow(t,)
t5 = pow(t,) w = -t
w2 = pow(w,)
w3 = pow(w,)
w4 = pow(w,)
w5 = pow(w,) a1 = w5
a2 = *w4*t
a3 = *w3*t2
a4 = *w2*t3
a5 = *w*t4
a6 = t5 x = a1*ax+a2*bx+a3*cx+a4*dx+a5*ex+a6*fx;
y = a1*ay+a2*by+a3*cy+a4*dy+a5*ex+a6*fx;

数学图形(1.47)贝塞尔(Bézier)曲线的更多相关文章

  1. 数学图形(2.14)Spherical helix曲线

    从http://mathworld.wolfram.com/SphericalHelix.html上找到如下一些关于该曲线的说明,不过似乎他的公式和我的脚本完全是两个东西.. The tangent  ...

  2. 数学图形(2.13)Spherical trochoid曲线

    该曲线与上一节的herical cycloid球面外摆曲线 很相似,难道这是球面内摆曲线? #http://www.mathcurve.com/courbes3d/cycloidspheric/tro ...

  3. 数学图形(1.34) peut aussi曲线

    这是一种左右对称的类圆形曲线 #http://www.mathcurve.com/courbes2d/lissajous/lissajous2.shtml vertices = t = to (*PI ...

  4. 数学图形之贝塞尔(Bézier)曲面

    前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...

  5. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  6. 数学图形之将曲线(curve)转化成曲面管

    在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将 ...

  7. 数学图形(1.2)Sin曲线

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 Sin曲线 vertices = x = *PI) to (*PI) y = ...

  8. 数学图形(2.19) 利萨茹3D曲线

    在前面的章节数学图形(1.13) 利萨茹曲线中,写的是二维的利萨茹曲线,这一节,将其变为3D图形. #http://www.mathcurve.com/courbes3d/lissajous3d/li ...

  9. 数学图形(1.26)Clairaut曲线

    像瓜子样的曲线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/cour ...

随机推荐

  1. maven配置文件中modules的作用

    modules 从字面意思来说,module就是模块,而pom.xml中的modules也正是这个意思,用来管理同个项目中的各个模块:如果maven用的比较简单,或者说项目的模块在pom.xml没进行 ...

  2. faker php测试数据库生成

    官方地址:https://github.com/fzaninotto/Faker 使用方式: 1.composer直接下载: composer require fzaninotto/faker 2.将 ...

  3. NOIP练习赛题目1

    有些题目可能没做,如计算几何.恶心模拟. 高级打字机 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 早苗入手了最新的高级打字机 ...

  4. MAC下安装Homebrew 和 @权限的问题

    MAC下安装Homebrew和 @权限的问题 1.Homebrew简介: Homebrew是一个包管理器,用于安装Apple没有预装但你需要的UNIX工具.(比如著名的wget). Homebrew会 ...

  5. Android音频播放之SoundPool 详解

    SoundPool —— 适合短促且对反应速度比较高的情况(游戏音效或按键声等) 下面介绍SoundPool的创建过程: 1. 创建一个SoundPool (构造函数) public SoundPoo ...

  6. OpenOCD Debug Adapter Configuration

    Correctly installing OpenOCD includes making your operating system give OpenOCD access to debug adap ...

  7. STM32F2x Is it possible to request multiple DMA streams with single request

    I want to setup an application, where a single trigger-factor (compare-match of a timer) shall reque ...

  8. [Go] 子类 调用 父类 的 属性、方法

    package main import ( "fmt" ) type A struct { Text string Name string } func (a *A) Say() ...

  9. Programming 2D Games 读书笔记(第四章)

      示例一:Game Engine Part 1 更加完善游戏的基本流程 Graphics添加了以下几个方法,beginScene和endScene提高绘图,showBackbuffer去掉了clea ...

  10. poj-3352-Road Construction-缩点

    做法: 把所有的边双联通分量缩成一个点. 之后建树,然后求出这个树中度为1的点. #include<stdio.h> #include<iostream> #include&l ...