题面

传送门

题解

设\(dp_{i,j}\)表示前\(i\)座塔派了总共\(j\)个人的最大收益,转移显然

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=105,M=20005;
int dp[N][M],a[N][N],sz,s,n,m,x,res,qwq;
int main(){
// freopen("testdata.in","r",stdin);
s=read(),n=read(),m=read();
fp(j,1,s)fp(i,1,n)a[i][j]=read();
fp(i,1,n)sort(a[i]+1,a[i]+1+s);
memset(dp,0xef,sizeof(dp));
qwq=dp[0][0],dp[0][0]=0;
fp(i,0,n-1){
fp(j,0,sz)if(dp[i][j]!=qwq){
cmax(dp[i+1][j],dp[i][j]);
fp(k,1,s){
x=j+a[i+1][k]*2+1;
if(x<=m)cmax(dp[i+1][x],dp[i][j]+k*(i+1));
else break;
}
}
sz+=a[i+1][s]*2+1,cmin(sz,m);
}
res=qwq;
fp(i,0,m)cmax(res,dp[n][i]);
printf("%d\n",res);
return 0;
}

LOJ#3092. 「BJOI2019」排兵布阵(递推)的更多相关文章

  1. LOJ 3092 「BJOI2019」排兵布阵 ——DP

    题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...

  2. 【LOJ】#3092. 「BJOI2019」排兵布阵

    LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\( ...

  3. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  4. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  5. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  6. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  7. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  8. LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域

    题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...

  9. LOJ 3093 「BJOI2019」光线——数学+思路

    题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...

随机推荐

  1. java学习第四周

    这是暑假第四周,这周我继续学习了Java的基础知识. 了解到Java的类继承,学习到Java的接口的相关知识Java的每一个类都有且仅有一个直接父类,没有多重继承,但是接口可以继承多个,如果把接口看做 ...

  2. 68.iOS设备尺寸及型号代码(iPhoneXR/XS)

    所有设备型号官网地址: https://www.theiphonewiki.com/wiki/Models iPhone: 机型 像素 比例 像素密度 屏幕尺寸 机型代码 发布日期 iPhone 2g ...

  3. oracle 重建分区索引

    分区表的所有分区相当于一个单独的表. 创建在分区表上的索引,就相当于在所有分区上单独创建的索引(主键索引除外). 重建分区表的索引回报: ORA-14086:不能将分区索引作为整体重建. so,重建语 ...

  4. 2018.12.31 NOIP训练 偶数个5(简单数论)

    传送门 对于出题人zxyoizxyoizxyoi先%\%%为敬题目需要龟速乘差评. 题意简述:5e55e55e5组数据,给出n,请你求出所有n位数中有偶数个5的有多少,n≤1e18n\le1e18n≤ ...

  5. 2018.12.22 bzoj3473: 字符串(后缀自动机+启发式合并)

    传送门 调代码调的我怀疑人生. 启发式合并用迭代写怎么都跑不过(雾 换成了dfsdfsdfs版本的终于过了233. 题意简述:求给出nnn个字串,对于每个给定的字串求出其有多少个字串在至少kkk个剩下 ...

  6. PHP array

    一.数组操作的基本函数 数组的键名和值 array_values($arr);获得数组的值 array_keys($arr);获得数组的键名 array_flip($arr);数组中的值与键名互换(如 ...

  7. 对象序列化:pickle和shelve

    import pickle class DVD: def __init__(self,tilte,year=None,duration=None,director_id=None): self.tit ...

  8. ubuntu卸载软件命令,apt-get remove

    第一步,apt-get remove xxx :就是卸载xxx  或者 apt-get remove --purge xxx :卸载xxx并清除配置.   这两条命令对于依赖则是不管的.因为别的软件可 ...

  9. @RequestBody jackson解析复杂的传入值的一个坑;jackson解析迭代数组;jackson多重数组;jakson数组

    一.实际开发的一个问题. 传入一个json数组,数组中还嵌套数组,运用springboot+Jpa框架,@RequestBody注解传入数据 Controller @ApiOperation(valu ...

  10. textInput事件

    DOM3级事件引入了 textInput 这个代替keypress的textInput的行为稍有不同 区别 只要可以获得焦点的元素都有keypress事件,但是textInput事件只有文本编辑区域才 ...