「TJOI / HEOI2016」字符串

题目描述

佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物。生日礼物放在一个神奇的箱子中。箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 \(m\) 个问题。佳媛姐姐必须正确回答这 \(m\)个问题,才能打开箱子拿到礼物,升职加薪,出任 \(CEO\),嫁给高富帅,走上人生巅峰。每个问题均有 \(a,b,c,d\) 四个参数,问你子串 \(s[a…b]\) 的所有子串和 \(s[c…d]\) 的最长公共前缀的长度的最大值是多少?佳媛姐姐并不擅长做这样的问题,所以她向你求助,你该如何帮助她呢?

\(1 \leq n, m \leq 100000, \ a \leq b, \ c \leq d, \ 1 \leq a, b, c, d \leq n\)

### 解题思路 :

写\(sam\)是肯定会去写的,这样才学的了字符串,后缀数组又不会用,\(sam\)套上数据结构的感觉就像回家一样

里面又能剖分又能线段树合并,调试又好调,我爱死这种写法了 \(qwq\)

问题求一个字符串的前缀最多能和另一个字符串的所有子串匹配多少, 不妨二分答案判断这个前缀是否在这些子串里出现过

考虑对母串建 \(sam\) ,求出原串中每一个后缀在 \(sam\) 上的对应节点,那么对于需要\(check\) 的前缀 \([c, c + len -1]\) ,可以快速倍增找到其在前缀树上对应的节点

设找到的节点为 \(u\) ,问题就转化为 \(u\) 的 \(right\) 集合中,是否存在一个来自于 \([a+len-1, b]\) 的后缀

所以,直接大力线段树合并维护 \(parent\) 树上每个节点的 \(right\) 集合即可,查询只需要判断对应线段树的 \([a+len-1, b]\) 的和是否 \(>=1\),复杂度是 \(O(mlog^2n)\)

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define N (200005)
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
char s[N]; int n, m;
struct Segment_Tree{
int sum[N*25], lc[N*25], rc[N*25], cnt;
inline void modify(int &u, int l, int r, int pos){
u = ++cnt;
if(l == r) return (void) (sum[u]++);
int mid = l + r >> 1;
if(pos <= mid) modify(lc[u], l, mid, pos);
else modify(rc[u], mid + 1, r, pos);
sum[u] = sum[lc[u]] + sum[rc[u]];
}
inline int merge(int x, int y, int l, int r){
if(!x || !y) return x + y; int o = ++cnt;
if(l == r) sum[o] = sum[x] + sum[y];
else{
int mid = l + r >> 1;
lc[o] = merge(lc[x], lc[y], l, mid);
rc[o] = merge(rc[x], rc[y], mid + 1, r);
sum[o] = sum[lc[o]] + sum[rc[o]];
}
return o;
}
inline int query(int u, int l, int r, int L, int R){
if(!u) return 0;
if(l >= L && r <= R) return sum[u];
int mid = l + r >> 1, res = 0;
if(L <= mid) res += query(lc[u], l, mid, L, R);
if(mid < R) res += query(rc[u], mid + 1, r, L, R);
return res;
}
}Seg;
struct Suffix_Automaton{
int f[N][23], rt[N<<1], buf[N], a[N];
int ch[N][26], fa[N], dep[N], pos[N], tail, size;
inline Suffix_Automaton(){ tail = size = 1; }
inline int newnode(int x){ dep[++size] = x; return size; }
inline void ins(int c, int id){
int p = tail, np = newnode(dep[p] + 1);
Seg.modify(rt[np], 1, n, id), pos[id] = np;
for(; p && !ch[p][c]; p = fa[p]) ch[p][c] = np;
if(!p) return (void) (fa[np] = 1, tail = np);
int q = ch[p][c];
if(dep[q] == dep[p] + 1) fa[np] = q;
else{
int nq = newnode(dep[p] + 1);
fa[nq] = fa[q], fa[q] = fa[np] = nq;
for(int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
for(; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
}tail = np;
}
inline void prepare(){
for(int i = 1; i <= size; i++) f[i][0] = fa[i];
for(int j = 1; j <= 22; j++)
for(int i = 1; i <= size; i++) f[i][j] = f[f[i][j-1]][j-1];
for(int i = 1; i <= size; i++) buf[dep[i]]++;
for(int i = 1; i <= size; i++) buf[i] += buf[i-1];
for(int i = 1; i <= size; i++) a[buf[dep[i]]--] = i;
for(int i = size; i >= 2; i--){
int u = a[i];
rt[fa[u]] = Seg.merge(rt[u], rt[fa[u]], 1, n);
}
}
inline bool check(int x, int len, int l, int r){
x = pos[x];
for(int i = 22; i >= 0; i--) if(dep[f[x][i]] >= len) x = f[x][i];
return Seg.query(rt[x], 1, n, l, r) >= 1;
}
}van;
inline int solve(int a, int b, int c, int d){
int l = 1, r = min(b - a + 1, d - c + 1), ans = 0;
while(l <= r){
int mid = l + r >> 1;
if(van.check(c + mid - 1, mid, a + mid - 1, b))
ans = mid, l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main(){
read(n), read(m), scanf("%s", s + 1);
for(int i = 1; i <= n; i++) van.ins(s[i] - 'a', i);
van.prepare();
for(int i = 1; i <= m; i++){
int a, b, c, d;
read(a), read(b), read(c), read(d);
printf("%d\n", solve(a, b, c, d));
}
return 0;
}

「TJOI / HEOI2016」字符串的更多相关文章

  1. loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增

    题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...

  2. 【LOJ】#2059. 「TJOI / HEOI2016」字符串

    题解 我们冷静一下,先画一棵后缀树 然后发现我们要给c和d这一段区间在[a,b]这一段开头的串里找lcp 而lcp呢,就是c点的祖先的到根的一段,假如这个祖先的子树里有[a,b - dis[u] + ...

  3. loj2059 「TJOI / HEOI2016」字符串

    字符串好难啊不会啊 #include <iostream> #include <cstdio> using namespace std; int n, m, rnk[10000 ...

  4. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  5. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

  6. AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ

    #2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...

  7. loj #2055. 「TJOI / HEOI2016」排序

    #2055. 「TJOI / HEOI2016」排序   题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...

  8. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  9. LOJ #2058「TJOI / HEOI2016」求和

    不错的推柿子题 LOJ #2058 题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...

随机推荐

  1. 【转】MySQL执行计划分析

    原文:http://www.cnblogs.com/wangyanhong/archive/2013/09/18/3327919.html 一.语法explain <sql语句>例如: e ...

  2. odoo开发思路篇

    1.首先从客户那了解需求,知道他现有系统所能实现的功能,现在要求要实现的功能,至于怎样实现由我们自己去定.(拿到需求------->了解需求功能--------->自己实现的方法) 2.在 ...

  3. C# event线程安全

    突然想到有关C#中使用event特性时关于线程安全的问题,以前虽然有遵从“复制引用+null判断”的模式(盲目地),但没有深入了解和思考. 为之查询了资料和实验,对此有了进一步的理解. 一般event ...

  4. java 锁白话

    一.锁 1.可见性: 定义:数据对所有线程可见 原因:cpu操作数据时会把数据读取到内存中去,可以理解为值做了备份,但是备份数据和原始数据在后续操作中不一定一致 实现:java使用volite关键字来 ...

  5. 【Qt】QOpenGLWidget展示蒙版效果

    关键代码是派生QOpenGLWidget,覆写paintEvent函数 QPainter p; p.begin(this); p.drawImage(QPoint(, ), m_Img); QLine ...

  6. STEAM 自动安装时提示C++ 安装不了等问题

    [情况] 今天安装游戏, 安装时自动安装 Visual C++ 2015 x64 Minimum Runtime ....不成功, 提示网络源不可使用, 或者使用以下安装源 C:\ProgramDat ...

  7. maven mvn package 打包项目时,出现错误导致失败的解决方法

    解决思路:看报错时在maven打包过程中的哪一步,然后看报错内容,解决报错内容即可,如果是实在不好解决的部分,看看能不能设置不检测,能打包出来就行. 这里是因为mybatis逆向工程插件出现异常所以中 ...

  8. java 对象是可以判空的

    比如这里存xml,这里判断了一下element是否为空,来避免空指针异常,推荐用guava的optional判空

  9. zabbix3.4 实现sendEmail邮件报警

    zabbix3.4实现sendEmail邮件报警 转发:https://www.cnblogs.com/pythonal/p/7813948.html sendEmail是一个轻量级,命令行的SMTP ...

  10. aiohttp简介及快速使用

    前言 本文翻译自aiohttp官方文档,如有纰漏,欢迎指出. aiohttp是一个为Python提供异步HTTP 客户端/服务端编程,基于asyncio(Python用于支持异步编程的标准库)的异步库 ...