$des$

$sol$

记 $f_i$ 表示考虑前 $i$ 个建筑, 并且第 $i$ 个建筑的高度不变的答案, 每次
转移时枚举上一个不变的建筑编号, 中间的一段一定变成相同的高度, 并且
高度小于等于两端的高度.
假设从 $f_j$ 转移且中间高度为 $t$, 则:
$$f_i = \sum_{k = j + 1} ^ {i - 1} (t - h_k) ^ 2 + c(h_j + h_i - 2t)$$
这样中间的高度可以 $O(1)$ 求二次函数的对称轴确定. 考虑优化转移,
因为中间高度要小于两端, 所以最多只有一个 $h_j > h_i$ 的 $j$ 能够转移. 可以
维护关于高度的单调栈, 这样有效的转移次数就是 O(n) 的.

$code$

#include <bits/stdc++.h>

using std::pair;
using std::vector;
using std::string; typedef long long ll;
typedef pair<int, int> pii; #define fst first
#define snd second
#define pb(a) push_back(a)
#define mp(a, b) std::make_pair(a, b)
#define debug(...) fprintf(stderr, __VA_ARGS__) template <typename T> bool chkmax(T& a, T b) { return a < b ? a = b, : ; }
template <typename T> bool chkmin(T& a, T b) { return a > b ? a = b, : ; } template <typename T> T read(T& x) {
int f = ; x = ;
char ch = getchar();
for(;!isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = x * + ch - ;
return x *= f;
} const int N = ; int n, C;
int h[N + ];
ll s[][N + ], dp[N + ]; ll solve(int x, int y, int mx) {
ll a = y - x - ;
ll b = - * (s[][y-] - s[][x]) - (x != ) * C - (y != n+) * C;
ll c = s[][y-] - s[][x] + 1ll * (x != ) * h[x] * C + 1ll * (y != n+) * h[y] * C; ll t;
t = (ll) ((- b / / a) + 0.5); chkmax<ll>(t, mx);
if(x != ) chkmin(t, (ll) h[x]);
if(y <= n) chkmin(t, (ll) h[y]); return a * t * t + b * t + c;
} int main() { read(n), read(C);
for(int i = ; i <= n; ++i) {
read(h[i]);
s[][i] = s[][i-] + h[i];
s[][i] = s[][i-] + 1ll * h[i] * h[i];
} static int stk[N + ], top; h[] = h[n + ] = ( << );
stk[top ++] = ; for(int i = ; i <= n+; ++i) {
dp[i] = dp[i-] + ((i == || i == n+) ? : 1ll * C * std::abs(h[i] - h[i-]));
while(top > && h[stk[top-]] <= h[i]) {
if(top > )
chkmin(dp[i], dp[stk[top-]] + solve(stk[top-], i, h[stk[top-]]));
-- top;
}
stk[top ++] = i;
}
printf("%lld\n", dp[n + ]); return ;
}

Problem 8 dp的更多相关文章

  1. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  2. [LightOJ1004]Monkey Banana Problem(dp)

    题目链接:http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1004 题意:数塔的变形,上面一个下面一个,看清楚 ...

  3. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  4. (LightOJ 1004) Monkey Banana Problem 简单dp

    You are in the world of mathematics to solve the great "Monkey Banana Problem". It states ...

  5. 【UVA 1380】 A Scheduling Problem (树形DP)

    A Scheduling Problem   Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...

  6. BZOJ 2302: [HAOI2011]Problem c( dp )

    dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...

  7. BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )

    概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...

  8. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

  9. hiho1259 A Math Problem (数位dp)

    题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...

  10. BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

    2302: [HAOI2011]Problem c Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 648  Solved: 355[Submit][S ...

随机推荐

  1. TweenLite参数用法中文介绍

    TweenLite是一个缓动的类包,功能强大,并且易于使用,为了更多的(E文欠佳的.初学的)朋友了解它,使用它,特此翻译了一下TweenLite类文档中的说明文件,主要是对参数的说明,希望对大家有用. ...

  2. Gym102028G Shortest Paths on Random Forests 生成函数、多项式Exp

    传送门 神仙题-- 考虑计算三个部分:1.\(n\)个点的森林的数量,这个是期望的分母:2.\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和:3.\(n\)个点的所有路径中存在最短路的点对 ...

  3. 查看线程CPU利用率

    查看线程CPU利用率 方法1:利用ps命令查看对应的线程 1. ps -ef | grep 进程名称 2. ps -mp 进程ID -o THREAD,pid,tid,cmd,time,%cpu,%m ...

  4. Window 使用Nginx 部署 Vue 并把nginx设为windows服务开机自动启动

    1.编译打包Vue项目 在终端输入 npm run build 进行打包编译.等待... 打包完成生成dist文件夹,这就是打包完成的文件. 我们先放着,进行下一步. 2下载Nginx 下载地址: h ...

  5. 分享-SpringCloud微服务架构图

    1: 为大家分享一张SpringCloud微服务通用架构图 ​标题 此图仅供参考: 需要原图的同学请移步 >>>>>>>>> 这里 如有不合理的地 ...

  6. android studio 出现 Default Activity not found

    1.AndroidManifest.xml <activity android:name=".activity.StartPage" android:screenOrient ...

  7. Swift面试题

    class 和 struct 的区别 1.struct是值类型,class是引用类型. 值类型的变量直接包含它们的数据,对于值类型都有它们自己的数据副本,因此对一个变量操作不可能影响另一个变量. 引用 ...

  8. iPhone 移植到 iPad:

    来源:http://www.wapera.cn/ipadkaifa/71354.html iPhone移植到iPad: 方法一修改设备目标设置(普通模式:一套代码及XIB界面文件,代码分if和else ...

  9. ArcEngine二次开发中运行出现There is no Spatial Analyst license currently available or enabled.

    只需要在许可控件上勾选空间分析功能即可.

  10. EhLib使用全攻略

    使用 TDBSumList 组件   还记得以前有朋友问过这样一个问题:在 DBGrid 下如何像 Excel 一样能够做统计计算,实话说,使用 DBGrid 来做的话着实不易,不过现在有了这个咚咚, ...