Problem 8 dp
$des$
$sol$
记 $f_i$ 表示考虑前 $i$ 个建筑, 并且第 $i$ 个建筑的高度不变的答案, 每次
转移时枚举上一个不变的建筑编号, 中间的一段一定变成相同的高度, 并且
高度小于等于两端的高度.
假设从 $f_j$ 转移且中间高度为 $t$, 则:
$$f_i = \sum_{k = j + 1} ^ {i - 1} (t - h_k) ^ 2 + c(h_j + h_i - 2t)$$
这样中间的高度可以 $O(1)$ 求二次函数的对称轴确定. 考虑优化转移,
因为中间高度要小于两端, 所以最多只有一个 $h_j > h_i$ 的 $j$ 能够转移. 可以
维护关于高度的单调栈, 这样有效的转移次数就是 O(n) 的.
$code$
#include <bits/stdc++.h> using std::pair;
using std::vector;
using std::string; typedef long long ll;
typedef pair<int, int> pii; #define fst first
#define snd second
#define pb(a) push_back(a)
#define mp(a, b) std::make_pair(a, b)
#define debug(...) fprintf(stderr, __VA_ARGS__) template <typename T> bool chkmax(T& a, T b) { return a < b ? a = b, : ; }
template <typename T> bool chkmin(T& a, T b) { return a > b ? a = b, : ; } template <typename T> T read(T& x) {
int f = ; x = ;
char ch = getchar();
for(;!isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = x * + ch - ;
return x *= f;
} const int N = ; int n, C;
int h[N + ];
ll s[][N + ], dp[N + ]; ll solve(int x, int y, int mx) {
ll a = y - x - ;
ll b = - * (s[][y-] - s[][x]) - (x != ) * C - (y != n+) * C;
ll c = s[][y-] - s[][x] + 1ll * (x != ) * h[x] * C + 1ll * (y != n+) * h[y] * C; ll t;
t = (ll) ((- b / / a) + 0.5); chkmax<ll>(t, mx);
if(x != ) chkmin(t, (ll) h[x]);
if(y <= n) chkmin(t, (ll) h[y]); return a * t * t + b * t + c;
} int main() { read(n), read(C);
for(int i = ; i <= n; ++i) {
read(h[i]);
s[][i] = s[][i-] + h[i];
s[][i] = s[][i-] + 1ll * h[i] * h[i];
} static int stk[N + ], top; h[] = h[n + ] = ( << );
stk[top ++] = ; for(int i = ; i <= n+; ++i) {
dp[i] = dp[i-] + ((i == || i == n+) ? : 1ll * C * std::abs(h[i] - h[i-]));
while(top > && h[stk[top-]] <= h[i]) {
if(top > )
chkmin(dp[i], dp[stk[top-]] + solve(stk[top-], i, h[stk[top-]]));
-- top;
}
stk[top ++] = i;
}
printf("%lld\n", dp[n + ]); return ;
}
Problem 8 dp的更多相关文章
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- [LightOJ1004]Monkey Banana Problem(dp)
题目链接:http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1004 题意:数塔的变形,上面一个下面一个,看清楚 ...
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- (LightOJ 1004) Monkey Banana Problem 简单dp
You are in the world of mathematics to solve the great "Monkey Banana Problem". It states ...
- 【UVA 1380】 A Scheduling Problem (树形DP)
A Scheduling Problem Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...
- BZOJ 2302: [HAOI2011]Problem c( dp )
dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...
- BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )
概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...
- hdu 5106 Bits Problem(数位dp)
题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...
- hiho1259 A Math Problem (数位dp)
题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
随机推荐
- centos6.5升级openssh至7.9p1
环境说明系统环境:centos 6.5 x64 openssh-5.3p1升级原因:低版本openssh存在漏洞升级目标:openssh-7.9p1 检查环境官方文档中提到的先决条件openssh安装 ...
- Java初学心得(二)
数组概述 一,数组基本操作 ①一维数组的创建:数组元素类型[] 数组名字=new 数组类型[数组元素个数] 例:int []arr=new int[5];数组长度为5 ②初始化一维数组:第一种:int ...
- Sql Server 根据条件查找多条数据中最大值的详细记录
--(正常效果) select l.* from loadCurveSampling l left join Meter m on l.meter_id=m.Meter_ID --聚合当天最大值数据记 ...
- springboot+security整合(2)自定义校验
说明 springboot 版本 2.0.3源码地址:点击跳转 系列 springboot+security 整合(1) springboot+security 整合(2) springboot+se ...
- 安装sqlite3
说明 当前操作在root用户下执行 1.安装编译工具 yum -y groupinstall "Development tools" yum -y install zlib-dev ...
- SpringBoot 中的使用事务
转自:https://blog.csdn.net/linzhiqiang0316/article/details/52638039 什么是事务? 我们在开发企业应用时,对于业务人员的一个操作实际是对数 ...
- Centos7修改默认启动内核
#使用cat /boot/grub2/grub.cfg |grep menuentry 查看系统可用内核 root@Cs7-:/root> cat /boot/grub2/grub.cfg | ...
- 宁波市第二届CTF之cripto1
密码学第一题 给的是一个shadow文件,16进制编辑器打开 是一串Linux root用户密码的密文,猜测密码可能就是flag,于是将这一串字符放到文本. linux下爆破用户密码的工具没接触过(还 ...
- Oracle数据库使用游标查询结果集所有数据
--Oracle使用游标查询结果集所有数据 DECLARE myTabelName NVARCHAR2():=''; --表名 myTableRowComment NVARCHAR2():=''; - ...
- 怎么保证redis集群的高并发和高可用的?
redis不支持高并发的瓶颈在哪里? 单机.单机版的redis支持上万到几万的QPS不等. 主要根据你的业务操作的复杂性,redis提供了很多复杂的操作,lua脚本. 2.如果redis要支撑超过10 ...