题目传送门:洛谷 P5564

题意简述:

有 \(n\) 个点,染 \(m\) 种颜色,第 \(i\) 种颜色染恰好 \(cnt_i\) 个节点,满足 \(cnt_1+cnt_2+\cdots+cnt_m=n\)。

求这 \(n\) 个点组成的本质不同无标号+有序(子树有序)基环(环长至少为 \(2\))树个数。

两棵基环树本质相同当且仅当通过环的旋转(不能翻转)后能使得它们完全相同。

题解:

首先考虑只染一种颜色的 \(n\) 个点(\(n\ge1\))的无标号有根有序树个数计数。
考虑这棵树的括号序,发现其括号序是长度为 \(n\) 的合法括号串,但是必须满足最外层括号(根节点)只有一对。
即 \(n\) 个点的有根有序树个数为 \(n-1\) 对括号组成的合法括号串,即第 \(n-1\) 个卡特兰数。
令 \(n\) 个点的有根有序树个数为 \(t_n\),令其 OGF 为 \(\displaystyle T=\sum_{i=1}^{+\infty}t_ix^i\),即 \(T=xC\),其中 \(C\) 为卡特兰数的 OGF。

再考虑染色的问题,不难发现只要有序,则染色和树形态是相互独立的。
即只要乘上一个多重组合数 \(\displaystyle\binom{n}{cnt_1,cnt_2,\ldots,cnt_m}\) 即可。


回到原问题,枚举环长 \(k\),使用 Burnside 引理统计等价类个数。环的旋转置换的统计方法是常见的,即枚举因数 \(d\),等价于循环 \(d\) 格的置换个数为 \(\varphi\!\left(\dfrac{k}{d}\right)\)。则有:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi\!\left(\dfrac{k}{d}\right)\!\cdot f(d)\end{aligned}\]

其中 \(f(d)\) 表示循环 \(d\) 格时的不动点个数。

循环 \(d\) 格时,存在 \(d\) 个长度为 \(\dfrac{k}{d}\) 的循环,循环内的每个元素都代表一棵外向树。为了方便进一步的展开,交换 \(d\) 与 \(\dfrac{k}{d}\) 的意义,枚举 \(d\) 为循环长度,而 \(\dfrac{k}{d}\) 为循环个数。此时每个循环内的树形态相互独立,而且染色和树形态相互独立,但每个循环的树形态必须相同,且染色也必须相同,也就是说有 \(\dfrac{k}{d}\) 棵树,且总点数为 \(\dfrac{n}{d}\),并且需要满足每种颜色的个数是 \(d\) 的倍数,即 \(\left.d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right.\)。则公式变为:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot f\!\left(\dfrac{k}{d}\right)\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\end{aligned}\]

此时有两条路可走,其一是留下生成函数 \(T\) 的形式不变,其二是考虑使用卡特兰数的性质。

先使用第一种做法,考虑交换求和顺序并改变求和指标 \(k\) 为 \(kd\):

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\varphi(d)\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{n/d}\frac{T^k}{kd}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{+\infty}\frac{T^k}{k}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!(-\ln(1-T))\end{aligned}\]

第二行的第一项是因为后面统计了 \(d=k=1\) 的情况,但是实际不需要,所以要减掉。
最后一行利用了 \(\ln\) 在 \(1\) 处展开的的泰勒级数:\(\displaystyle\ln(1-x)=-\sum_{i=1}^{+\infty}\frac{x^i}{i}\)。
先使用多项式对数函数计算出 \(-\ln(1-T)\),按照此式直接计算即可。时间复杂度 \(\mathcal{O}(n\log n+\sigma_0(n)\cdot m)\)。


第二种做法是考虑卡特兰数和自身的 \(m\) 次卷积的第 \(n\) 项的通项。

有公式 \(\displaystyle[x^n]C^m=\binom{2n+m-1}{n}-\binom{2n+m-1}{n-1}\),将此式代入可得:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left(\binom{2n/d-k/d-1}{2n/d-2k/d}-\binom{2n/d-k/d-1}{2n/d-2k/d-1}\right)\!\cdot\binom{n/d}{cnt_{1\ldots m}/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\sum_{k=1}^{n/d}\frac{1}{k}\!\left(\binom{2n/d-k-1}{2n/d-2k}-\binom{2n/d-k-1}{2n/d-2k-1}\right)\!\end{aligned}\]

直接计算即可,复杂度 \(\mathcal{O}(\sigma_0(n)(n+m))\)。

洛谷 P5564: [Celeste-B]Say Goodbye的更多相关文章

  1. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  2. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  3. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  4. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  5. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  6. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  7. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  8. 洛谷八月月赛Round1凄惨记

    个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...

  9. 洛谷 P1379 八数码难题 Label:判重&&bfs

    特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...

随机推荐

  1. 5. git-lab 项目操作

    项目操作 一.给成员授权项目权限 之前我们是给组增加成员.  当有的项目需要给组下面的成员授权不一样的时候. 我们需要在项目里面给成员授权权限 点击管理区域 点这个项目 看下图,我们可以看到  现在这 ...

  2. 面向对象程序设计(JAVA) 第8周学习指导及要求

    2019面向对象程序设计(Java)第8周学习指导及要求 (2019.10.18-2019.10.21)  学习目标 掌握接口定义方法: 掌握实现接口类的定义要求: 掌握实现了接口类的使用要求: 理解 ...

  3. JVM的内存结构以及性能调优

    JVM的内存结构以及性能调优 发布时间: 2017-11-22 阅读数: 16675 JVM的内存结构以及性能调优1:JVM的结构主要包括三部分,堆,栈,非堆内存(方法区,驻留字符串)堆上面存储的是引 ...

  4. Jsoup获取部分页面数据失败 Unhandled content type. Must be text/*, application/xml, or application/xhtml+xml

    用Jsoup在获取一些网站的数据时,起初获取很顺利,但是在访问某浪的数据是Jsoup报错,应该是请求头里面的请求类型(ContextType)不符合要求. 请求代码如下: private static ...

  5. jquery模拟点击事件

    在某些情况下,我们需要自动执行一些点击事件.比如:一些 tab 一般是通过点击事件来加载不同的数据内容. 而如果要页面加载完直接显示第三个 tab,怎么办呢?此时就需要用到 jQuery 的模拟点击事 ...

  6. display Flex 盒子模型布局兼容Android UC

    <!DOCTYPE html><html><head><meta charset="utf-8"><meta content= ...

  7. 第04组 Alpha冲刺(5/6)

    队名:new game 组长博客:戳 作业博客:戳 组员情况 鲍子涵(队长) 燃尽图 过去两天完成了哪些任务 才两天,也就是实现一些功能而已 复习了一下SuffixAutomata 接下来的计划 实现 ...

  8. linux软链接

    这是linux中一个非常重要的命令,他的功能是为某一个文件在另一个位置建立一个同步的链接,这个命令最常用的参数是-s, 具体用法是: ln -s 源文件 目标文件 当我们需要在不同的目录,用到相同的文 ...

  9. python yield from (一)

    1. yield from 会抛出iterator中所有的值:而yield只是抛出传进来的值,如果是值,就抛出值,如果是iterator对象,抛出iterator对象 def g1(iterable) ...

  10. C++ 在线编译器(支持 C++11)

    C++11 的 Inheriting constructors 特性在 GCC 4.8 以前的版本及 VS2013 中都没有支持,测试起来比较麻烦,所以搜集到了几个支持 GCC 4.8 及更高版本的在 ...