tf.nn.softmax_cross_entropy_with_logits()函数的使用方法
import tensorflow as tf labels = [[0.2,0.3,0.5],
[0.1,0.6,0.3]]
logits = [[2,0.5,1],
[0.1,1,3]] a=tf.nn.softmax([2,0.5,1]) # 此行代码观看softmax函数如何处理数据,结果表明是按照行进行处理,即ln2/(ln2+ln0.5+ln1)
result1 = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) # 可以发现此函数只将预测logits进行了softmax,这样就可以不用对logits数据进行softmax了
logits_scaled = tf.nn.softmax(logits) # 对logits数据进行softmax
result2 = -tf.reduce_sum(labels*tf.log(logits_scaled),1)
result3 = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits_scaled) with tf.Session() as sess:
print(sess.run(a))
# print(sess.run(logits_scaled))
print(sess.run(result1))
print(sess.run(result2))
print(sess.run(result3))
softmax实际就是将输入函数带到一个方程np.power(np.e,xi)/Σnp.power(np.e,xi)中得到,其代码如下:
[2,0.5,1]
a=np.power(np.e,2)+np.power(np.e,0.5)+np.power(np.e,1)
print(np.power(np.e,2)/a)
tf.nn.softmax_cross_entropy_with_logits()函数的使用方法的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
随机推荐
- linux驱动由浅入深系列:高通sensor架构实例分析之三(adsp上报数据详解、校准流程详解)【转】
本文转载自:https://blog.csdn.net/radianceblau/article/details/76180915 本系列导航: linux驱动由浅入深系列:高通sensor架构实例分 ...
- 【vue】解决npm run build失败问题
问题说明: 首先,npm run build失败的原因大部分都是因为webpack的子库和webpack的版本号不对应的问题
- Java基础 awt Frame 点击叉后,在控制台输出提示信息并关闭程序
JDK :OpenJDK-11 OS :CentOS 7.6.1810 IDE :Eclipse 2019‑03 typesetting :Markdown code ...
- 【转】模糊测试(fuzzing)是什么
一.说明 大学时两个涉及“模糊”的概念自己感觉很模糊.一个是学数据库出现的“模糊查询”,后来逐渐明白是指sql的like语句:另一个是学专业课时出现的“模糊测试”. 概念是懂的,不外乎是“模糊测试是一 ...
- flink ---- 系统内部消息传递的exactly once语义
At Most once,At Least once和Exactly once 在分布式系统中,组成系统的各个计算机是独立的.这些计算机有可能fail. 一个sender发送一条message到rec ...
- 运行应用-使用Deployment运行无状态应用程序
以下介绍如何使用kubernetes的deployment对象运行应用程序. 目标 - 创建nginx deployment. - 使用kubectl列出有关部署的信息. - 更新部署 创建和探索ng ...
- C++文件fstream的操作
用到的关于输入输出fstream流相关的知识 1.两个主要函数:read( )函数 从流中读取字符串的成员函数read 该成员函数一般形式是:read(char* pch, int nCount) 从 ...
- Vue 组件封装发布到npm 报错 Uncaught TypeError: Cannot read property 'toLowerCase' of undefined
Uncaught TypeError: Cannot read property 'toLowerCase' of undefined 原因是 没有导出 export default { name:& ...
- 开源录屏软件Capture推荐
参考链接:有哪些值得推荐的电脑录屏软件与手机录屏软件? - 霸都丶傲天的回答 - 知乎 下载地址(9.0支持中文)
- kafka高可用性集群
kafka集群并测试其高可用性 介绍 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站 ...