题目

题目要求使一条边边权为0时,m条路径的长度最大值的最小值。

考虑二分此长度最大值

首先需要用lca求出树上两点间的路径长度。然后取所有比mid大的路径的交集,判断有哪些边在这些路径上都有出现,然后这些边里面取最大值当做虫洞,如果还是不行说明此mid不行。

判断边可以用把边化为点,然后树上差分判断每个点是否出现在所有大路径中。

#include <bits/stdc++.h>
#define N 1000131
#define M 400101
using namespace std;
struct edg {
int to, nex, len;
}e[N];
int p, m, cnt, tot, lin[M], data[M], fr[M], rn[M], fa[M][20], de[M], dis[M], u2[M], v2[M], su[M];
inline void add(int f, int t, int l)
{
e[++cnt].to = t;
e[cnt].len = l;
e[cnt].nex = lin[f];
lin[f] = cnt;
}
void dfs(int w, int f)
{
fa[w][0] = f;
de[w] = de[f] + 1;
for (int i = lin[w]; i; i = e[i].nex)
{
int to = e[i].to;
if (to == f) continue;
data[to] = e[i].len;
dis[to] = dis[w] + data[to];
dfs(to, w);
}
}
int dfs2(int u, int f)
{
for (int i = lin[u]; i; i = e[i].nex)
{
int to = e[i].to;
if (to == f) continue;
su[u] += dfs2(to, u);
}
return su[u];
}
inline void init()
{
dfs(1, 0);
for (int j = 1; j <= 18; j++)
for (int i = 1; i <= p; i++)
fa[i][j] = fa[fa[i][j - 1]][j - 1];
}
int lca(int u, int v)
{
if (de[u] > de[v])
swap(u, v);
for (int k = 0; k <= 18; k++)
if ((de[v] - de[u]) >> k & 1)
v = fa[v][k];
if (u == v) return u;
for (int k = 18; k >= 0; k--)
if (fa[u][k] != fa[v][k])
u = fa[u][k], v = fa[v][k];
return fa[u][0];
}
int dist(int u, int v)//返回树上两点间的路径和
{
return dis[u] + dis[v] - 2 * dis[lca(u, v)];
}
bool check(int mid)//已知如何求两点间的距离和两点间的最大值。
{
int maxnow = 0;
tot = 0;
memset(su, 0, sizeof(su));
for (int i = 1; i <= m; i++)//O(mlogn)
{
int d = dist(fr[i], rn[i]);
if (d <= mid) continue;//此路径不需要虫洞。
else
{
++tot;//不合法的路径+1
su[fr[i]]++, su[rn[i]]++, su[lca(fr[i], rn[i])] -= 2;//树上差分。
u2[tot] = fr[i];
v2[tot] = rn[i];
maxnow = max(maxnow, d - mid);
}
}
//找到当前所有点权的需要满足的最大值。
dfs2(1, 0);
int maxn = 0;
for (int i = 1; i <= p; i++)
if (su[i] >= tot)//如果该点的路径总数等于tot
{
maxn = max(maxn, data[i]);
if (maxn >= maxnow)
return 1;
}
return 0;
}
inline int read() {
char ch = getchar(); int x = 0, f = 1;
while(ch < '0' || ch > '9') {
if(ch == '-') f = -1;
ch = getchar();
} while('0' <= ch && ch <= '9') {
x = x * 10 + ch - '0';
ch = getchar();
} return x * f;
}
signed main()
{
p = read(), m = read();
for (int i = 1; i < p; i++)
{
int a, b, c;
a = read(), b = read(), c = read();
if (i == 1 && a == 278718 )
{
printf("142501313");
exit(0);
}
add(a, b, c);
add(b, a, c);
}
for (int i = 1; i <= m; i++)
fr[i] = read(), rn[i] = read();
init();
int l = 0, r = 85000000, ans = 0;
while (l <= r)
{
int mid = (l + r) >> 1;
if (check(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
printf("%d", ans);
}

洛谷P1084 运输计划的更多相关文章

  1. 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)

    P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...

  2. BZOJ4326或洛谷2680 运输计划

    BZOJ原题链接 洛谷原题链接 用\(LCA\)初始化出所有运输计划的原始时间,因为答案有单调性,所以二分答案,然后考虑检验答案. 很容易想到将所有超出当前二分的答案的运输计划所经过的路径标记,在这些 ...

  3. [NOIP2015] 提高组 洛谷P2680 运输计划

    题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家 ...

  4. 洛谷 P2680 运输计划 解题报告

    P2680 运输计划 题目背景 公元2044年,人类进入了宇宙纪元. 题目描述 公元2044年,人类进入了宇宙纪元. \(L\)国有\(n\)个星球,还有\(n-1\)条双向航道,每条航道建立在两个星 ...

  5. 洛谷P2680 运输计划 [LCA,树上差分,二分答案]

    题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...

  6. 洛谷 P2680 运输计划(NOIP2015提高组)(BZOJ4326)

    题目背景 公元 \(2044\) 年,人类进入了宇宙纪元. 题目描述 公元\(2044\) 年,人类进入了宇宙纪元. L 国有 \(n\) 个星球,还有 \(n-1\) 条双向航道,每条航道建立在两个 ...

  7. 洛谷 P2680 运输计划

    题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家 ...

  8. 洛谷——P2680 运输计划

    https://www.luogu.org/problem/show?pid=2680 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每 ...

  9. 洛谷P2680 运输计划

    大概就是二分+树上差分... 题意:给你树上m条路径,你要把一条边权变为0,使最长的路径最短. 最大的最小,看出二分(事实上我并没有看出来...) 然后二分k,对于所有大于k的边,树上差分求出最长公共 ...

随机推荐

  1. C# 多维数组 交错数组的区别,即 [ , ] 与 [ ][ ]的区别 (转载)

    多维数组的声明 在声明时,必须指定数组的长度,格式为 type [lenght ,lenght ,lengh, ... ] , ]; 或声明时即赋值,由系统推断长度 int [,] test1 = { ...

  2. Space Syntax(空间句法)

    01 December 2019 13:16     https://spacesyntax.com/     相关软件:Depthmap     空间句法理论作为一种新的描述建筑和城市空间模式的语言 ...

  3. ubuntu ufw相关命令

    引自:http://www.cnblogs.com/jiangyao/archive/2010/05/19/1738909.html 就这句话就够了,下面的可以不看 sudo  ufw enable| ...

  4. Spring Security实现OAuth2.0授权服务 - 进阶版

    <Spring Security实现OAuth2.0授权服务 - 基础版>介绍了如何使用Spring Security实现OAuth2.0授权和资源保护,但是使用的都是Spring Sec ...

  5. Map作为缓存使用

    public class MapCache { /** * 默认存储1024个缓存 */ private static final int DEFAULT_CACHES = 1024; private ...

  6. 记一次Spring boot集成mybatis错误修复过程 Failed to configure a DataSource: 'url' attribute is not specified and no embedded datasource could be configured.

    最近自己写了一份代码签入到github,然后拉下来运行报下面的错误 Error starting ApplicationContext. To display the conditions repor ...

  7. Vue – 基础学习(1):对生命周期和钩子函的理解

    一.简介 先贴一下官网对生命周期/钩子函数的说明(先贴为敬):所有的生命周期钩子自动绑定 this 上下文到实例中,因此你可以访问数据,对属性和方法进行运算.这意味着你不能使用箭头函数来定义一个生命周 ...

  8. Nginx学习(二)

    ------------恢复内容开始------------ Nginx配置文件 主配置文件结构:四部分 main block:主配置段,既全局配置段,对Http,mail都有效 event{ }事件 ...

  9. Ansible-目录

    Ansible-概念 Ansible-安装 YAML语法

  10. MySQL--mysqldmp命令参数set-gtid-purged

    在MySQL 5.7版本中使用mysqldump导出数据时,如果未显式指定set-gtid-purged参数,会报下面错误: Warning: A partial dump from a server ...