Fix multiple GPUs fails in training Mask_RCNN
Test with:
Keras: 2.2.4
Python: 3.6.9
Tensorflow: 1.12.0
==================
Problem:
Using code from https://github.com/matterport/Mask_RCNN
When setting GPU_COUNT > 1
enconter this error:
RuntimeError: It looks like you are subclassing `Model` and you forgot to call `super(YourClass, self).__init__()`. Always start with this line.
Traceback (most recent call last):
File "D:\Anaconda33\lib\site-packages\keras\engine\network.py", line 313, in __setattr__
is_graph_network = self._is_graph_network
File "parallel_model.py", line 46, in __getattribute__
return super(ParallelModel, self).__getattribute__(attrname)
AttributeError: 'ParallelModel' object has no attribute '_is_graph_network' During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "parallel_model.py", line 159, in <module>
model = ParallelModel(model, GPU_COUNT)
File "parallel_model.py", line 35, in __init__
self.inner_model = keras_model
File "D:\Anaconda33\lib\site-packages\keras\engine\network.py", line 316, in __setattr__
'It looks like you are subclassing `Model` and you '
RuntimeError: It looks like you are subclassing `Model` and you forgot to call `super(YourClass, self).__init__()`. Always start with this line.
Solution 1:
changing code in mrcnn/parallel_model.py as the following:
class ParallelModel(KM.Model):
def __init__(self, keras_model, gpu_count):
"""Class constructor.
keras_model: The Keras model to parallelize
gpu_count: Number of GPUs. Must be > 1
"""
super(ParallelModel, self).__init__()
self.inner_model = keras_model
self.gpu_count = gpu_count
merged_outputs = self.make_parallel()
super(ParallelModel, self).__init__(inputs=self.inner_model.inputs,
outputs=merged_outputs)
When getting this error:
asking for two arguments: inputs and outputs
Just upgrade your Keras to 2.2.4
When getting this error:
No node-device colocations were active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation.
Device assignments active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation:
with tf.device(/gpu:1): <M:\new\mrcnn\parallel_model.py:70>
No node-device colocations were active during op 'anchors/Variable' creation.
No device assignments were active during op 'anchors/Variable' creation.
Traceback (most recent call last):
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call
return fn(*args)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1317, in _run_fn
self._extend_graph()
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1352, in _extend_graph
tf_session.ExtendSession(self._session)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot colocate nodes {{colocation_node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0}} and {{colocation_node anchors/Variable}}: Cannot merge devices with incompatible ids: '/device:GPU:0' and '/device:GPU:1'
[[{{node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0}} = Identity[T=DT_FLOAT, _class=["loc:@anchors/Variable"], _device="/device:GPU:1"](tower_1/mask_rcnn/anchors/Variable/cond/Merge)]] During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "train_mul.py", line 448, in <module>
"mrcnn_bbox", "mrcnn_mask"])
File "M:\new\mrcnn\model.py", line 2132, in load_weights
saving.load_weights_from_hdf5_group_by_name(f, layers)
File "D:\Anaconda33\lib\site-packages\keras\engine\saving.py", line 1022, in load_weights_from_hdf5_group_by_name
K.batch_set_value(weight_value_tuples)
File "D:\Anaconda33\lib\site-packages\keras\backend\tensorflow_backend.py", line 2440, in batch_set_value
get_session().run(assign_ops, feed_dict=feed_dict)
File "D:\Anaconda33\lib\site-packages\keras\backend\tensorflow_backend.py", line 197, in get_session
[tf.is_variable_initialized(v) for v in candidate_vars])
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 929, in run
run_metadata_ptr)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run
run_metadata)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot colocate nodes node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0 (defined at M:\new\mrcnn\model.py:1936) having device Device assignments active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation:
with tf.device(/gpu:1): <M:\new\mrcnn\parallel_model.py:70> and node anchors/Variable (defined at M:\new\mrcnn\model.py:1936) having device No device assignments were active during op 'anchors/Variable' creation. : Cannot merge devices with incompatible ids: '/device:GPU:0' and '/device:GPU:1'
[[node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0 (defined at M:\new\mrcnn\model.py:1936) = Identity[T=DT_FLOAT, _class=["loc:@anchors/Variable"], _device="/device:GPU:1"](tower_1/mask_rcnn/anchors/Variable/cond/Merge)]] No node-device colocations were active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation.
Device assignments active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation:
with tf.device(/gpu:1): <M:\new\mrcnn\parallel_model.py:70> No node-device colocations were active during op 'anchors/Variable' creation.
No device assignments were active during op 'anchors/Variable' creation. Caused by op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0', defined at:
File "train_mul.py", line 417, in <module>
model_dir=MODEL_DIR)
File "M:\new\mrcnn\model.py", line 1839, in __init__
self.keras_model = self.build(mode=mode, config=config)
File "M:\new\mrcnn\model.py", line 2064, in build
model = ParallelModel(model, config.GPU_COUNT)
File "M:\new\mrcnn\parallel_model.py", line 36, in __init__
merged_outputs = self.make_parallel()
File "M:\new\mrcnn\parallel_model.py", line 80, in make_parallel
outputs = self.inner_model(inputs)
File "D:\Anaconda33\lib\site-packages\keras\engine\base_layer.py", line 457, in __call__
output = self.call(inputs, **kwargs)
File "D:\Anaconda33\lib\site-packages\keras\engine\network.py", line 570, in call
output_tensors, _, _ = self.run_internal_graph(inputs, masks)
File "D:\Anaconda33\lib\site-packages\keras\engine\network.py", line 724, in run_internal_graph
output_tensors = to_list(layer.call(computed_tensor, **kwargs))
File "D:\Anaconda33\lib\site-packages\keras\layers\core.py", line 682, in call
return self.function(inputs, **arguments)
File "M:\new\mrcnn\model.py", line 1936, in <lambda>
anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 183, in __call__
return cls._variable_v1_call(*args, **kwargs)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 146, in _variable_v1_call
aggregation=aggregation)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 125, in <lambda>
previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 2444, in default_variable_creator
expected_shape=expected_shape, import_scope=import_scope)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 187, in __call__
return super(VariableMetaclass, cls).__call__(*args, **kwargs)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 1329, in __init__
constraint=constraint)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 1480, in _init_from_args
self._initial_value),
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 2177, in _try_guard_against_uninitialized_dependencies
return self._safe_initial_value_from_tensor(initial_value, op_cache={})
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 2195, in _safe_initial_value_from_tensor
new_op = self._safe_initial_value_from_op(op, op_cache)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\ops\variables.py", line 2241, in _safe_initial_value_from_op
name=new_op_name, attrs=op.node_def.attr)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op
op_def=op_def)
File "D:\Anaconda33\lib\site-packages\tensorflow\python\framework\ops.py", line 1770, in __init__
self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): Cannot colocate nodes node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0 (defined at M:\new\mrcnn\model.py:1936) having device Device assignments active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation:
with tf.device(/gpu:1): <M:\new\mrcnn\parallel_model.py:70> and node anchors/Variable (defined at M:\new\mrcnn\model.py:1936) having device No device assignments were active during op 'anchors/Variable' creation. : Cannot merge devices with incompatible ids: '/device:GPU:0' and '/device:GPU:1'
[[node tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0 (defined at M:\new\mrcnn\model.py:1936) = Identity[T=DT_FLOAT, _class=["loc:@anchors/Variable"], _device="/device:GPU:1"](tower_1/mask_rcnn/anchors/Variable/cond/Merge)]] No node-device colocations were active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation.
Device assignments active during op 'tower_1/mask_rcnn/anchors/Variable/anchors/Variable/read_tower_1/mask_rcnn/anchors/Variable_0' creation:
with tf.device(/gpu:1): <M:\new\mrcnn\parallel_model.py:70> No node-device colocations were active during op 'anchors/Variable' creation.
No device assignments were active during op 'anchors/Variable' creation.
Adding this line:
import keras.backend.tensorflow_backend as KTF config = tf.ConfigProto()
config.allow_soft_placement=True
session = tf.Session(config=config)
KTF.set_session(session)
Solution 2:(not recommended)
downgrade Keras to 2.1.3:
conda install keras=2.1.3
(this works for someone but not works for me)
Reference:
https://github.com/matterport/Mask_RCNN/issues/921
https://github.com/tensorflow/tensorflow/issues/2285
Fix multiple GPUs fails in training Mask_RCNN的更多相关文章
- HDU 4913 Least common multiple(2014 Multi-University Training Contest 5)
题意:求所有自己的最小公倍数的和. 该集合是 2^ai * 3^bi 思路:线段树. 线段树中存的是 [3^b * f(b)] f(b)表示 因子3 的最小公倍数3的部分 为 3^b的个数 ...
- Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
作者提出的方法是Algotithm 2.简单来说就是,训练的时候,在几个模型中,选取预测最准确的(也就是loss最低的)模型进行权重更新.
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
- Training a classifier
你已经学习了如何定义神经网络,计算损失和执行网络权重的更新. 现在你或许在思考. What about data? 通常当你需要处理图像,文本,音频,视频数据,你能够使用标准的python包将数据加载 ...
- 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...
- PatentTips - Hierarchical RAID system including multiple RAIDs
BACKGROUND OF THE INVENTION The present invention relates to a storage system offering large capacit ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Deep Learning with Torch
原文地址:https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb Deep Learn ...
- VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...
随机推荐
- 2019 满帮java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.满帮等公司offer,岗位是Java后端开发,因为发展原因最终选择去了满帮,入职一年时间了,也成为了面试官,之 ...
- comet oj #7
A 签到题 题目描述 多次询问,每次询问给一个值域范围 [l,r][l,r],要回答下列四个问题: 从这个范围内选出两个整数(两个数可相同), (1) 这两个数的最小公倍数最大是多少? (2) 这两个 ...
- FreeRTOS 任务通知模拟计数型信号量
举例 //释放计数型信号量任务函数 void SemapGive_task(void *pvParameters) { u8 key; while(1) { key = KEY_Scan(0); // ...
- TP5日志打印方法封装
需求:在开发及测试过程中需要打印日志,并且可以将日志内容打印到指定文件,这样方便查看. 过程: 1. 打开think\Log文件,在该文件中添加一个静态方法,代码如下: /** * @param $m ...
- Prometheus(五):Prometheus+Alertmanager 配置企业微信报警
此处默认已安装Prometheus服务,服务地址:192.168.56.200 一.设置企业微信 1.1.企业微信注册(已有企业微信账号请跳过) 企业微信注册地址:https://work.weix ...
- C#实体类与XML相互转换
1.实体类与XML相互转换 将实体类转换成XML需要使用XmlSerializer类的Serialize方法,将实体类序列化. 把XML转换成相应的实体类,需要使用到XmlSerializer类的De ...
- 【使用DIV+CSS重写网站首页案例】CSS盒子模型
CSS盒子模型 取值问题: 默认情况,padding.border.margin都为0: 设定区域内容的width和height,是区域内容框的尺寸: 如果设定padding/border/margi ...
- C/C++解题常用STL大礼包 含vector,map,set,queue(含优先队列) ,stack的常用用法
每次忘记都去查,真难啊 /* C/C++解题常用STL大礼包 含vector,map,set,queue(含优先队列) ,stack的常用用法 */ /* vector常用用法 */ //头文件 #i ...
- js 正则表达式2
对于某些特殊的字符,我们 必须转义一下才可以使用.(注意一点,我们使用那些需要转义的字符是通过"\"+相应的字符来构成的,记住是"\",而不也是"/& ...
- Beta冲刺(3/7)——2019.5.24
所属课程 软件工程1916|W(福州大学) 作业要求 Beta冲刺(3/7)--2019.5.24 团队名称 待就业六人组 1.团队信息 团队名称:待就业六人组 团队描述:同舟共济扬帆起,乘风破浪万里 ...