[NOIP2013]华容道

首先是一种比较显然的做法。

整个棋盘,除了起点,终点和空格,其他的方块是等价的。

对于终点,它始终不会变化,如果搜到终点结束搜索即可,所以我们不需要考虑终点。

所以需要考虑的是空格的位置和起点方块的位置。

定义$f(i1,j1,i2,j2)$为

空格所在坐标$(i1,j1)$  起点坐标$(i2,j2)$。

对于每一步,可以移动空格周围的一个可移动棋子,将它与空格位置交换。其实等价于空格移动到和空格相邻的棋子。如果该棋子是起点,则将起点更新到原来空格的坐标。

使用bfs,每次步数加一,队列内的状态步数满足单调,第一次得到(区别于dijkstra,不是第一次取出)的任何一个状态就是最优。当第一次得到起点坐标等于终点坐标时,直接返回答案。

如果到最后也没有得到起点坐标等于终点坐标,返回-1表示无解。

这一种做法实际上遍历了可能得到答案的所有情况,应该不是正解。

复杂度O(n²m²q),期望得分80,不太好剪枝。

这道题的正解使我想到了另一道题。进阶指南0x25节中推箱子一题。也使用了bfs。

空格到处乱跑,其实是没有意义的,如果它不在起点的周围四个格子,它永远无法使起点靠近终点。

所以我们固定空格在起点的周围四个点,并用当前的状态去更新以后的状态。

每次取出,一种更新方式是直接与起点交换,二是将该位置交换到起点的另一个方向。

因为每次的增量不保证相同,这一次不保证第一次得到是最优了,所以要使用spfa或者dijkstra来跑最短路。

如果像推箱子一样双重bfs,那么你一定还是会tle,甚至比以前跑得更慢。因为复杂度一点都没有降下来。

问题在这一道题是多测,解决办法是预处理,只要O(n²m²)对每一个点更新一下到其他点的距离即可。

[NOIP2013]华容道 题解的更多相关文章

  1. [NOIP2013]华容道 题解(搜索)

    [NOIP2013]华容道 [题目描述] 这道题根据小时候玩华容道不靠谱的经验还以为是并查集,果断扑街.考后想想也是,数据这么小一定有他的道理. 首先由于是最小步数,所以BFS没跑了.那么我们大可把这 ...

  2. LOJ2613 NOIP2013 华容道 【最短路】*

    LOJ2613 NOIP2013 华容道 LINK 这是个好题,具体题意比较麻烦可以直接看LINK中的链接 然后考虑我们可能的移动方式 首先我们需要把白块移动到需要移动块S的附近(附近四格) 然后我们 ...

  3. 华容道题解 NOIP2013 思路题!

    第一次发紫题题解,居然在发布前太激动,把刚写好的还没发布的题解一个Ctrl+A和Backspace全删了.(所以这是二稿) luogu题目传送门 前置: 做本题一定要有的一些思想: 1.从简思想: 模 ...

  4. NOIP2013 DAY2题解

    DAY2 T1积木大赛 传送门 题目大意:每次可以选区间[l,r]加1,最少选几次,让每个位置有 它应有的高度. 题解:O(n)扫一遍就好了.后一个比前一个的高度低,那么前一个已经把它覆盖了, 如果高 ...

  5. noip2013华容道

    题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 ...

  6. [NOIP2013]华容道

    1.题面 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间.小 B 玩的华容道与经典 ...

  7. NOIP2013 华容道 (棋盘建图+spfa最短路)

    #include <cstdio> #include <algorithm> #include <cstring> #include <queue> # ...

  8. NOIP2013华容道 大爆搜

    预处理出每个点周围四个点互相到达的最短路,再在整个图上跑SPFA,要记录路径 #include<cstdio> #include<cstring> #include<io ...

  9. NOIP2013华容道(BFS+乱搞)

    n<=30 * m<=30 的地图上,0表示墙壁,1表示可以放箱子的空地.q<=500次询问,每次问:当空地上唯一没有放箱子的空格子在(ex,ey)时,把位于(sx,sy)的箱子移动 ...

随机推荐

  1. 新版GRANAFA K8S插件 K8S NODE 图表不显示问题解决方法

    原文:https://www.wchao.site/archives/granafa-k8s 其他参考:https://blog.csdn.net/bbwangj/article/details/82 ...

  2. 2019 头条java面试笔试总结 (含面试题解析)

       本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条等公司offer,岗位是Java后端开发,因为发展原因最终选择去了头条,入职一年时间了,也成为了面试官,之前面 ...

  3. Django--FBV + CBV

    目录 FBV + CBV FBV(function bases views) FBV中加装饰器相关 CBV(class bases views) CBV中加装饰器相关 FBV + CBV django ...

  4. EXT.NET Combox下拉Grid

    <ext:ComboBox ID="cmbCategory" runat="server" TypeAhead="true" Forc ...

  5. 【转载】C#中使用Insert方法往ArrayList集合指定索引位置插入新数据

    ArrayList集合是C#中的一个非泛型的集合类,是弱数据类型的集合类,可以使用ArrayList集合变量来存储集合元素信息,在ArrayList集合操作过程中,可以使用ArrayList集合类的I ...

  6. [摘抄] 4.require命令

    4.require命令 1. 基本用法 Node适用CommonJS模块规范,内置的require命令用于加载模块文件. require命令的基本功能是,读入并执行一个JavaScript文件,然后返 ...

  7. JavaScript 之 Array 对象

    Array 对象 之前已经了解了 Array(数组)的定义和基本操作.数组的基本操作. 下面来学习更多的方法. 检测一个对象是否是数组 instanceof // 看看该变量是否是该对象的实例 Arr ...

  8. 为Linux操作系统配置SSH互信

    Linux 互信,免登陆 1.切换到要建立互信的用户(以root为例): su - root cd ~ 2.制作密钥并赋权: # ssh-keygen -t dsa               #出现 ...

  9. Ettercap 详细参数

    Ettercap最初设计为交换网上的sniffer,但是随着发展,它获得了越来越多的功能,成为一款有效的.灵活的中介攻击工具.它支持主动及被动的协议解析并包含了许多网络和主机特性(如OS指纹等)分析. ...

  10. java.lang.IllegalArgumentException: An invalid character [34] was present in the Cookie value

    java.lang.IllegalArgumentException: An invalid character [34] was present in the Cookie value at org ...