Description

The little cat takes over the management of a new park. There is a large circular statue in the center of the park, surrounded by N pots of flowers. Each potted flower will be assigned to an integer number (possibly negative) denoting how attractive it is. See the following graph as an example:

(Positions of potted flowers are assigned to index numbers in the range of 1 ... N. The i-th pot and the (i + 1)-th pot are consecutive for any given i (1 <= i < N), and 1st pot is next to N-th pot in addition.)

The board chairman informed the little cat to construct "ONE arc-style cane-chair" for tourists having a rest, and the sum of attractive values of the flowers beside the cane-chair should be as large as possible. You should notice that a cane-chair cannot be a total circle, so the number of flowers beside the cane-chair may be 1, 2, ..., N - 1, but cannot be N. In the above example, if we construct a cane-chair in the position of that red-dashed-arc, we will have the sum of 3+(-2)+1+2=4, which is the largest among all possible constructions.

Unluckily, some booted cats always make trouble for the little cat, by changing some potted flowers to others. The intelligence agency of little cat has caught up all the M instruments of booted cats' action. Each instrument is in the form of "A B", which means changing the A-th potted flowered with a new one whose attractive value equals to B. You have to report the new "maximal sum" after each instruction.

 
  题目就是求最大连续和,限制条件是环状和不能全选。
  一般环状问题是复制一个一样的序列让两个合并,但是这个题这样好像不能做,所以卡了,后来才明白可以维护最小值,来解决环状最大值问题。
 
代码如下:
// ━━━━━━神兽出没━━━━━━
//    ┏┓ ┏┓
//   ┏┛┻━━━━━━━┛┻┓
//   ┃ ┃
//   ┃ ━ ┃
// ████━████ ┃
//   ┃ ┃
//   ┃ ┻ ┃
//   ┃ ┃
//   ┗━┓ ┏━┛
//    ┃ ┃
//    ┃ ┃
//    ┃ ┗━━━┓
//    ┃ ┣┓
//    ┃ ┏┛
//    ┗┓┓┏━━━━━┳┓┏┛
//     ┃┫┫ ┃┫┫
//     ┗┻┛ ┗┻┛
//
// ━━━━━━感觉萌萌哒━━━━━━ // Author : WhyWhy
// Created Time : 2015年07月16日 星期四 19时07分04秒
// File Name : 2750.cpp #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h> using namespace std; const int MaxN=; #define lc (po<<1)
#define rc ((po<<1)|1)
#define lson L,M,lc
#define rson M+1,R,rc int LN[MaxN<<],RN[MaxN<<],BIT[MaxN<<],SUM[MaxN<<];
int ln[MaxN<<],rn[MaxN<<],bit[MaxN<<];
int minn[MaxN<<]; void pushUP(int po)
{
SUM[po]=SUM[lc]+SUM[rc]; minn[po]=min(minn[lc],minn[rc]); BIT[po]=max(BIT[lc],BIT[rc]);
BIT[po]=max(BIT[po],max(SUM[lc]+LN[rc],SUM[rc]+RN[lc]));
BIT[po]=max(BIT[po],LN[rc]+RN[lc]); LN[po]=max(LN[lc],SUM[lc]+LN[rc]);
RN[po]=max(RN[rc],SUM[rc]+RN[lc]); bit[po]=min(bit[lc],bit[rc]);
bit[po]=min(bit[po],min(SUM[lc]+ln[rc],SUM[rc]+rn[lc]));
bit[po]=min(bit[po],ln[rc]+rn[lc]); ln[po]=min(ln[lc],SUM[lc]+ln[rc]);
rn[po]=min(rn[rc],SUM[rc]+rn[lc]);
} void update(int up,int ut,int L,int R,int po)
{
if(L==R)
{
SUM[po]=BIT[po]=LN[po]=RN[po]=ut;
bit[po]=ln[po]=rn[po]=ut;
minn[po]=ut;
return;
} int M=(L+R)>>; if(up<=M)
update(up,ut,lson);
else
update(up,ut,rson); pushUP(po);
} int num[MaxN]; void build(int L,int R,int po)
{
if(L==R)
{
LN[po]=RN[po]=BIT[po]=SUM[po]=num[L];
ln[po]=rn[po]=bit[po]=num[L];
minn[po]=num[L];
return;
} int M=(L+R)>>; build(lson);
build(rson); pushUP(po);
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int N;
int ans; scanf("%d",&N); for(int i=;i<=N;++i)
scanf("%d",&num[i]); build(,N,); int M,a,b; scanf("%d",&M); while(M--)
{
scanf("%d %d",&a,&b); update(a,b,,N,); ans=max(BIT[],SUM[]-bit[]); if(ans==SUM[])
ans-=minn[]; printf("%d\n",ans);
} return ;
}

(简单) POJ 2750 Potted Flower,环+线段树。的更多相关文章

  1. POJ 2750 Potted Flower(线段树的区间合并)

    点我看题目链接 题意 : 很多花盆组成的圆圈,每个花盆都有一个值,给你两个数a,b代表a位置原来的数换成b,然后让你从圈里找出连续的各花盆之和,要求最大的. 思路 :这个题比较那啥,差不多可以用DP的 ...

  2. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  3. POJ 2750 Potted Flower (线段树区间合并)

    开始懵逼找不到解法,看了网上大牛们的题解才发现是区间合并...  给你n个数形成一个数列环,然后每次进行一个点的修改,并输出这个数列的最大区间和(注意是环,并且区间最大只有n-1个数) 其实只需要维护 ...

  4. POJ.2750.Potted Flower(线段树 最大环状子段和)

    题目链接 /* 13904K 532ms 最大 环状 子段和有两种情况,比如对于a1,a2,a3,a4,a5 一是两个端点都取,如a4,a5,a1,a2,那就是所有数的和减去不选的,即可以计算总和减最 ...

  5. POJ 2750 Potted Flower(线段树+dp)

    题目链接 虽然是看的别的人思路,但是做出来还是挺高兴的. 首先求环上最大字段和,而且不能是含有全部元素.本来我的想法是n个元素变为2*n个元素那样做的,这样并不好弄.实际可以求出最小值,总和-最小,就 ...

  6. POJ 2750 Potted Flower

    Potted Flower Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3872   Accepted: 1446 Des ...

  7. POJ 2750 Potted Flower (单点改动求线段树上最大子序列和)

    题目大意: 在一个序列上每次改动一个值,然后求出它的最大的子序列和. 思路分析: 首先我们不考虑不成环的问题.那就是直接求每一个区间的最大值就好了. 可是此处成环,那么看一下以下例子. 5 1 -2 ...

  8. POJ 2828 Buy Tickets(线段树 树状数组/单点更新)

    题目链接: 传送门 Buy Tickets Time Limit: 4000MS     Memory Limit: 65536K Description Railway tickets were d ...

  9. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

随机推荐

  1. ant 配置 和测试 1

    配置路径 D:\dba\change\UAT\unity\schema\test ----v0 版本 sql.xml   (默认target 是versionfinal ,也就是最终版本) --ver ...

  2. Lua 垃圾收集机制

    1. 问题:一款用Lua做的游戏,玩了一段时间后会变卡 因为知道lua是有自动管理内存的机制,所以之前一直没有关注过lua内存的问题.所以今天好好的查看了lua垃圾收集机制.看了一下Lua的Garba ...

  3. python2.x 使用protobuf

    1.在windows下配置protobuf 1.1 下载对应的包,包含两个:protoc.exe和源码文件(protoc也可以自己生成) 下载地址1 --- google code最近在迁移,也许以后 ...

  4. 【转】dmidecode命令详解

    Dmidecode 这款软件允许你在 Linux 系统下获取有关硬件方面的信息.Dmidecode 遵循 SMBIOS/DMI 标准,其输出的信息包括 BIOS.系统.主板.处理器.内存.缓存等等. ...

  5. cmd下载文件

    进入cmd 输入ftp 192.168.1.200 然后按照提示输入用户名和密码 cd 进入要下载的目录 dir 看操作权限 lcd查看本地要装下载文件的目录 prompt关闭交互模式 mget da ...

  6. robot framework -记录关键字

    1.set value if (当条件满足时,进行变量赋值) 2.focus (将焦点定在制定的元素) 3.win close +title(关闭制定title) 4.get list items  ...

  7. linux 显示文件或文件夹

    用 -v 很简单呀! 显示文件 ls -l | grep -v '^d'显示目录 ls -l | grep '^d'

  8. 在vim下,实现nesC语句的高亮

    默认的vim没有支持nesC语法高亮,给阅读源码带来不便.不过可以通过装NesC Syntax Highlighting插件来解决这个问题,具体操作如下: 步骤一:下载插件 在http://www.v ...

  9. java 内存分配全面解析

    JVM是什么? 首先要知道的是Java程序运行在JVM(Java Virtual Machine,Java虚拟机)上;可以把JVM理解成Java程序和操作系统之间的桥梁,JVM实现了 Java的平台无 ...

  10. robot_framewok自动化测试

    robot_framewok自动化测试 http://wenku.baidu.com/view/691abcaa4b73f242336c5fec.html 接口自动化测试框架设计 http://wen ...