hadoop文件系统浅析
1.什么是分布式文件系统?
管理网络中跨多台计算机存储的文件系统称为分布式文件系统。
2.为什么需要分布式文件系统了?
原因很简单,当数据集的大小超过一台独立物理计算机的存储能力时候,就有必要对它进行分区(partition)并存储到若干台单独计算机上。
3.分布式系统比传统的文件的系统更加复杂
因为分布式文件系统架构在网络之上,因此分布式系统引入了网络编程的复杂性,所以分布式文件系统比普通文件系统更加复杂。
4.Hadoop的文件系统
很多童鞋会把hdfs等价于hadoop的文件系统,其实hadoop是一个综合文件系统抽象,而hdfs是hadoop旗舰级文件系统,hadoop除了hdfs还能集成其他文件系统。Hadoop的这个特点充分体现了hadoop的优良的可扩展性。
在hadoop里,hadoop定义了一个抽象的文件系统的概念,具体就是hadoop里面定义了一个java的抽象 类:org.apache.hadoop.fs.FileSystm,这个抽象类用来定义hadoop中的一个文件系统接口,只要某个文件系统实现了这个 接口,那么它就可以作为hadoop支持的文件系统。下面是目前实现了hadoop抽象文件类的文件系统,如下表所示:
文件系统 |
URI方案 |
Java实现 (org.apache.hadoop) |
定义 |
Local |
file |
fs.LocalFileSystem |
支持有客户端校验和本地文件系统。带有校验和的本地系统文件在fs.RawLocalFileSystem中实现。 |
HDFS |
hdfs |
hdfs.DistributionFileSystem |
Hadoop的分布式文件系统。 |
HFTP |
hftp |
hdfs.HftpFileSystem |
支持通过HTTP方式以只读的方式访问HDFS,distcp经常用在不同的HDFS集群间复制数据。 |
HSFTP |
hsftp |
hdfs.HsftpFileSystem |
支持通过HTTPS方式以只读的方式访问HDFS。 |
HAR |
har |
fs.HarFileSystem |
构建在Hadoop文件系统之上,对文件进行归档。Hadoop归档文件主要用来减少NameNode的内存使用。 |
KFS |
kfs |
fs.kfs.KosmosFileSystem |
Cloudstore(其前身是Kosmos文件系统)文件系统是类似于HDFS和Google的GFS文件系统,使用C++编写。 |
FTP |
ftp |
fs.ftp.FtpFileSystem |
由FTP服务器支持的文件系统。 |
S3(本地) |
s3n |
fs.s3native.NativeS3FileSystem |
基于Amazon S3的文件系统。 |
S3(基于块) |
s3 |
fs.s3.NativeS3FileSystem |
基于Amazon S3的文件系统,以块格式存储解决了S3的5GB文件大小的限制。 |
最后我要强调一点:在hadoop里有一个文件系统概念,例如上面的FileSystem抽象类,它是位于hadoop的Common项目里,主要 是定义一组分布式文件系统和通用的I/O组件和接口,hadoop的文件系统准确的应该称作hadoop I/O。而HDFS是实现该文件接口的hadoop自带的分布式文件项目,hdfs是对hadoop I/O接口的实现。
下面我给大家展示一张表,这样大家对hadoop的FileSystem里的相关API操作就比较清晰了,表如下所示:
Hadoop的FileSystem |
Java操作 |
Linux操作 |
描述 |
URL.openSteam FileSystem.open FileSystem.create FileSystem.append |
URL.openStream |
open |
打开一个文件 |
FSDataInputStream.read |
InputSteam.read |
read |
读取文件中的数据 |
FSDataOutputStream.write |
OutputSteam.write |
write |
向文件写入数据 |
FSDataInputStream.close FSDataOutputStream.close |
InputSteam.close OutputSteam.close |
close |
关闭一个文件 |
FSDataInputStream.seek |
RandomAccessFile.seek |
lseek |
改变文件读写位置 |
FileSystem.getFileStatus FileSystem.get* |
File.get* |
stat |
获取文件/目录的属性 |
FileSystem.set* |
File.set* |
Chmod等 |
改变文件的属性 |
FileSystem.createNewFile |
File.createNewFile |
create |
创建一个文件 |
FileSystem.delete |
File.delete |
remove |
从文件系统中删除一个文件 |
FileSystem.rename |
File.renameTo |
rename |
更改文件/目录名 |
FileSystem.mkdirs |
File.mkdir |
mkdir |
在给定目录下创建一个子目录 |
FileSystem.delete |
File.delete |
rmdir |
从一个目录中删除一个空的子目录 |
FileSystem.listStatus |
File.list |
readdir |
读取一个目录下的项目 |
FileSystem.getWorkingDirectory |
getcwd/getwd |
返回当前工作目录 |
|
FileSystem.setWorkingDirectory |
chdir |
更改当前工作目录 |
有了这张表,大家对FileSystem的理解应该会清晰多了吧。
大家从对照表里会发现,hadoop的FileSystem里有两个类:FSDataInputStream和 FSDataOutputStream类,它们相当于java I/O里的InputStream和Outputsteam,而事实上这两个类是继承java.io.DataInputStream和 java.io.DataOutputStream。
至于关于hadoop I/O本文今天不做介绍,以后也许会专门写篇文章讲讲我自己的理解,不过为了给大家一个清晰的印象,我在博客园里找到了两篇文章,有兴趣的童鞋可以好好看看看,连接如下:
http://www.cnblogs.com/xuqiang/archive/2011/06/03/2042526.html
http://www.cnblogs.com/xia520pi/archive/2012/05/28/2520813.html
5.数据的完整性
数据完整性也就是检测数据是否损坏的技术。Hadoop用户肯定都希望系统在存储和处理数据时候,数据不会有任何的丢失或损坏,尽管磁盘或网络上的 每个I/O操作都不太可能将错误引入到自己正在读写的数据里,但是如果系统需要处理的数据量大到hadoop能够处理的极限,数据被损坏的概率就很高了。 Hadoop引入了数据完整性校验的功能,下面我将其原理描述如下:
检测数据是否损坏的措施是,在数据第一次引入系统时候计算校验和(checksum),并在数据通过一个不可靠的通道时候进行传输时再次计算校验 和,这样就能发现数据是否损坏了,如果两次计算的校验和不匹配,你就认为数据已经损坏了,但是该技术不能修复数据,它只能检测出错误。常用的错误检测码是 CRC-32(循环冗余校验),任何大小的数据输入均计算得到一个32位的整数校验和。
6.压缩与输入分片
文件压缩有两大好处:一是可以减少存储文件所需要的磁盘空间,二是可以加速数据在网络和磁盘上的传输。对于处理海量数据的hadoop而言,这两个好处就变得相当重要了,所以理解hadoop的压缩是很有必要的,下表列出了hadoop支持的压缩格式,如下表:
压缩格式 |
工具 |
算法 |
文件扩展名 |
多文件 |
可分割性 |
DEFLATE |
无 |
DEFLATE |
.deflate |
不 |
不 |
gzip |
gzip |
DEFLATE |
.gz |
不 |
不 |
ZIP |
zip |
DEFLATE |
.zip |
是 |
是,在文件范围内 |
bzip2 |
bzip2 |
bzip2 |
.bz2 |
不 |
是 |
LZO |
lzop |
LZO |
.lzo |
不 |
是 |
在hadoop对于压缩有两个指标很重要一个是压缩率还有就是压缩速度,下表列出一些压缩格式在此方面表现的性能,如下所示:
压缩算法 |
原始文件大小 |
压缩后的文件大小 |
压缩速度 |
解压缩速度 |
gzip |
8.3GB |
1.8GB |
17.5MB/s |
58MB/s |
bzip2 |
8.3GB |
1.1GB |
2.4MB/s |
9.5MB/s |
LZO-bset |
8.3GB |
2GB |
4MB/s |
60.6MB/s |
LZO |
8.3GB |
2.9GB |
49.3MB/S |
74.6MB/s |
在hadoop支持压缩里,是否支持切分(splitting)文件的特性也是相当重要的,下面我将讲述切分的问题,也就是我标题写的输入分片的问题:
压缩格式是否可以切分的特性是针对mapreduce处理数据而言的,比如我们有一个压缩为1GB的文件,如果hdfs块大小设置为(hdfs 块我的文章里没有讲解,不理解的童鞋可以先查查百度,以后我在写hdfs时候会重点讲这个的)64mb,那么这个文件将存储在16个块里,如果把这个文件 作为mapreduce作业的输入数据,mapreduce会根据这16个数据块,产生16个map操作,每个块都是其中一个map操作的输入,那么 mapreduce执行效率会非常的高,但是这个前提就是该压缩格式要支持切分。假如压缩格式不支持切分的话,那么mapreduce也是可以做出正确处 理,这时候它会将16个数据块放到一个map任务里面,这时候map任务数少了,作业粒度也变大了,那么执行效率就会大大下降。
由于本人知识还是有限,关于压缩和切入分片的问题我就讲述到这里,下面提供一篇相关的文章,有兴趣的童鞋可以看看,链接如下:
http://www.cnblogs.com/ggjucheng/archive/2012/04/22/2465580.html
7.hadoop序列化
我们先看两个定义:
序列化:是指将结构化对象转化为字节流,以便在网络上传输或写到磁盘上进行永久存储。
反序列化:是指将字节流转向结构化对象的逆过程。
序列化在分布式数据处理量大领域经常出现:进程通信和永久存储。
Hadoop中,各个节点的通信是通过远程调用(RPC)实现的,RPC将数据序列化成二进制后发送给远程节点,远程节点收到数据后将二进制字节流反序列化为原始数据。序列化在RPC应用中有着自己的特点,RPC序列化的特点是:
- 紧凑:紧凑的格式能让我们能充分利用网络带宽,而带宽是数据中心最稀缺的资源;
- 快速:进程通信形成了分布式系统的骨架,所以需要尽量减少序列化和反序列化的性能开销,这是基本的
- 可扩展:协议为了满足新的需求变化,所以控制客户端和服务器过程中,需要直接引进相应的协议,这些事新协议,原序列化方式能支持心得协议报文
- 互操作:能支持不同语言写的客户端和服务端进行交互
在hadoop里面有自己定义的序列化格式:writable,它是hadoop的核心之一。
Writable是一个接口,要实现hadoop的序列化就得实现该接口。因为时间原因,序列化我也不展开了,我下面也推荐一篇文章,里面讲述了hadoop的序列化,虽然讲的简单点,而且不全面,但是看完后对hadoop序列化的具体实现会有个初步的了解,链接如下:
http://blog.csdn.net/a15039096218/article/details/7591072
本文来源于夏天的森林
hadoop文件系统浅析的更多相关文章
- [转帖]hadoop学习笔记:hadoop文件系统浅析
hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式 ...
- hadoop学习笔记:hadoop文件系统浅析
1.什么是分布式文件系统? 管理网络中跨多台计算机存储的文件系统称为分布式文件系统. 2.为什么需要分布式文件系统了? 原因很简单,当数据集的大小超过一台独立物理计算机的存储能力时候,就有必要对它进行 ...
- hadoop文件系统FileSystem详解 转自http://hi.baidu.com/270460591/item/0efacd8accb7a1d7ef083d05
Hadoop文件系统 基本的文件系统命令操作, 通过hadoop fs -help可以获取所有的命令的详细帮助文件. Java抽象类org.apache.hadoop.fs.FileSystem定义了 ...
- 云计算分布式大数据Hadoop实战高手之路第八讲Hadoop图文训练课程:Hadoop文件系统的操作实战
本讲通过实验的方式讲解Hadoop文件系统的操作. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发布云 ...
- Hadoop InputFormat浅析
本文转载:http://hi.baidu.com/_kouu/item/dc8d727b530f40346dc37cd1 在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动 ...
- Java API实现Hadoop文件系统增删改查
Java API实现Hadoop文件系统增删改查 Hadoop文件系统可以通过shell命令hadoop fs -xx进行操作,同时也提供了Java编程接口 maven配置 <project x ...
- hadoop文件系统与I/O流
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-filesystem-io.html,转载请注明源地址. hadoop借鉴了Linux虚拟文件系统的概念 ...
- Hadoop学习笔记(3) Hadoop文件系统二
1 查询文件系统 (1) 文件元数据:FileStatus,该类封装了文件系统中文件和目录的元数据,包括文件长度.块大小.备份.修改时间.所有者以及版权信息.FileSystem的getFileSta ...
- hadoop2.5.2学习及实践笔记(六)—— Hadoop文件系统及其java接口
文件系统概述 org.apache.hadoop.fs.FileSystem是hadoop的抽象文件系统,为不同的数据访问提供了统一的接口,并提供了大量具体文件系统的实现,满足hadoop上各种数据访 ...
随机推荐
- 谈谈ThreadStatic
可能经常做多线程.线程池的童鞋早就知道这种问题,原谅我一直对线程研究不深. 这个东西好像出现有一段时间了,不过最近我才用到,做的API的服务,用来保存当前请求的上下文内容,原来用过Thread.Set ...
- VC6.0 通过崩溃地址中找到异常代码行
来源:http://blog.csdn.net/mydeardingxiaoli/article/details/20371585 这是从“VC编程经验总结7”中转出来的借花献佛——如何通过崩溃地址找 ...
- 1.部分(苹果)移动端的cookie不支持中文字符,2.从json字符串变为json对象时,只支持对象数组
1.移动端的cookie不支持中文字符.可以用编码,解码的方式解决. 2.json字符串变成相应 的,json对象数组字符串.就这样 3.不同客户端(移动端.电脑)的请求,在C#服务端的取时间的格式竟 ...
- Namenode写Journalnode超时,导致Namenode挂掉的问题
昨天还好好的集群,今天早上来看又挂掉了,还好是家里的测试服务器集群... 首先,查看了Namenode的状态,发现两台Namenode只剩下一台了,赶紧到挂了的那台去查看了logs下的日志: -- : ...
- Android View的事件分发
如果接触android开发时间足够长的话,或多或少都会遇到各种各样事件冲突的问题,要想解决这类问题,对深入理解事件分发机制是很有必要的,接下来几天都会尽自己所能尽可能将这方面讲清楚. View的事件 ...
- 设计模式 --迭代器模式(Iterator)
能够游走于聚合内的每一个元素,同时还可以提供多种不同的遍历方式. 基本概念: 就是提供一种方法顺序访问一个聚合对象中的各个元素,而不是暴露其内部的表示. 使用迭代器模式的优点: 遍历集合或者数 ...
- 布局常见问题之css实现多行文本溢出显示省略号(…)全攻略
省略号在ie中可以使用text-overflow:ellipsis了,但有很多的浏览器都需要固定宽度了,同时ff这些浏览器并不支持text-overflow:ellipsis设置了,下文来给各位整理一 ...
- 《JS权威指南学习总结--8.4 作为值的函数》
内容要点: 函数可以定义,也可以调用,这是函数最重要的特性.函数定义和调用是JS的词法特性,对于其他大多数编程语言来说也是如此.然而在JS中,函数不仅仅是一种语法,也是值,也就是说,可以将函数赋值 ...
- java 邮件发送 apache commons-email
package com.sun.mail;import org.apache.commons.mail.Email;import org.apache.commons.mail.EmailExcept ...
- Marble 绘制线
#include <QtGui/QApplication> #include <marble/MarbleWidget.h> #include <marble/GeoPa ...