hadoop在实现kmeans算法——一个mapreduce实施
写mapreduce程序实现kmeans算法。我们的想法可能是
1. 次迭代后的质心
2. map里。计算每一个质心与样本之间的距离,得到与样本距离最短的质心,以这个质心作为key,样本作为value,输出
3. reduce里,输入的key是质心,value是其它的样本,这时又一次计算聚类中心,将聚类中心put到一个所有变量t中。
4. 在main里比較前一次的质心和本次的质心是否发生变化,假设变化,则继续迭代,否则退出。
本文的思路基本上是依照上面的步骤来做的,仅仅只是有几个问题须要解决
1. hadoop是不存在自己定义的全局变量的。所以上面定义一个全局变量存放质心的想法是实现不了的。所以一个替代的思路是将质心存放在文件里
2. 存放质心的文件在什么地方读取,假设在map中读取。那么能够肯定我们是不能用一个mapreduce实现一次迭代。所以我们选择在main函数里读取质心,然后将质心set到configuration中。configuration在map和reduce都是可读
3. 怎样比較质心是否发生变化,是在main里比較么,读取本次质心和上一次质心的文件然后进行比較。这样的方法是能够实现的,可是显得不够高富帅,这个时候我们用到了自己定义的counter,counter是全局变量,在map和reduce中可读可写,在上面的思路中,我们看到reduce是有上次迭代的质心和刚刚计算出来的质心的。所以直接在reduce中进行比較就全然能够。假设没发生变化,counter加1。仅仅要在main里比較获取counter的值即可了。
梳理一下,详细的过程例如以下
1. main函数读取质心文件
2. 将质心的字符串放到configuration中
3. 在mapper类重写setup方法,获取到configuration的质心内容。解析成二维数组的形式。代表质心
4. mapper类中的map方法读取样本文件,跟全部的质心比較。得出每一个样本跟哪个质心近期,然后输出<质心,样本>
5. reducer类中又一次计算质心,假设又一次计算出来的质心跟进来时的质心一致,那么自己定义的counter加1
6. main中获取counter的值,看是否等于质心,假设不相等,那么继续迭代,否在退出
详细的实现例如以下
1. pom依赖
这个要跟集群的一致。由于假设不一致在计算其它问题的时候没有问题。可是在使用counter的时候会出现故障
java.lang.IncompatibleClassChangeError: Found interface org.apache.hadoop.mapreduce.Counter, but class was expected
原因是:事实上从2.0開始。org.apache.hadoop.mapreduce.Counter从1.0版本号的class改为interface,能够看一下你导入的这个类是class还是interface,假设是class那么就是导包导入的不正确,须要改动
2.
样本
实例样本例如以下
1,1
2,2
3,3
-3,-3
-4,-4
-5,-5
3.
质心
这个质心是从样本中随机找的
1,1
2,2
4. 代码实现
首先定义一个Center类,这个类主要存放了质心的个数k,还有两个从hdfs上读取质心文件的方法,一个用来读取初始的质心。这个实在文件里,另一个是用来读取每次迭代后的质心目录,这个是在目录中的,代码例如以下
Center类
public class Center { protected static int k = 2; //质心的个数 /**
* 从初始的质心文件里载入质心,并返回字符串。质心之间用tab切割
* @param path
* @return
* @throws IOException
*/
public String loadInitCenter(Path path) throws IOException { StringBuffer sb = new StringBuffer(); Configuration conf = new Configuration();
FileSystem hdfs = FileSystem.get(conf);
FSDataInputStream dis = hdfs.open(path);
LineReader in = new LineReader(dis, conf);
Text line = new Text();
while(in.readLine(line) > 0) {
sb.append(line.toString().trim());
sb.append("\t");
} return sb.toString().trim();
} /**
* 从每次迭代的质心文件里读取质心,并返回字符串
* @param path
* @return
* @throws IOException
*/
public String loadCenter(Path path) throws IOException { StringBuffer sb = new StringBuffer(); Configuration conf = new Configuration();
FileSystem hdfs = FileSystem.get(conf);
FileStatus[] files = hdfs.listStatus(path); for(int i = 0; i < files.length; i++) { Path filePath = files[i].getPath();
if(!filePath.getName().contains("part")) continue;
FSDataInputStream dis = hdfs.open(filePath);
LineReader in = new LineReader(dis, conf);
Text line = new Text();
while(in.readLine(line) > 0) {
sb.append(line.toString().trim());
sb.append("\t");
}
} return sb.toString().trim();
}
}
KmeansMR类
public class KmeansMR { private static String FLAG = "KCLUSTER"; public static class TokenizerMapper
extends Mapper<Object, Text, Text, Text>{ double[][] centers = new double[Center.k][];
String[] centerstrArray = null; @Override
public void setup(Context context) { //将放在context中的聚类中心转换为数组的形式。方便使用
String kmeansS = context.getConfiguration().get(FLAG);
centerstrArray = kmeansS.split("\t");
for(int i = 0; i < centerstrArray.length; i++) {
String[] segs = centerstrArray[i].split(",");
centers[i] = new double[segs.length];
for(int j = 0; j < segs.length; j++) {
centers[i][j] = Double.parseDouble(segs[j]);
}
}
} public void map(Object key, Text value, Context context
) throws IOException, InterruptedException { String line = value.toString();
String[] segs = line.split(",");
double[] sample = new double[segs.length];
for(int i = 0; i < segs.length; i++) {
sample[i] = Float.parseFloat(segs[i]);
}
//求得距离近期的质心
double min = Double.MAX_VALUE;
int index = 0;
for(int i = 0; i < centers.length; i++) {
double dis = distance(centers[i], sample);
if(dis < min) {
min = dis;
index = i;
}
} context.write(new Text(centerstrArray[index]), new Text(line));
}
} public static class IntSumReducer
extends Reducer<Text,Text,NullWritable,Text> { Counter counter = null; public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException { double[] sum = new double[Center.k];
int size = 0;
//计算相应维度上值的加和。存放在sum数组中
for(Text text : values) {
String[] segs = text.toString().split(",");
for(int i = 0; i < segs.length; i++) {
sum[i] += Double.parseDouble(segs[i]);
}
size ++;
} //求sum数组中每一个维度的平均值。也就是新的质心
StringBuffer sb = new StringBuffer();
for(int i = 0; i < sum.length; i++) {
sum[i] /= size;
sb.append(sum[i]);
sb.append(",");
} /**推断新的质心跟老的质心是否是一样的*/
boolean flag = true;
String[] centerStrArray = key.toString().split(",");
for(int i = 0; i < centerStrArray.length; i++) {
if(Math.abs(Double.parseDouble(centerStrArray[i]) - sum[i]) > 0.00000000001) {
flag = false;
break;
}
}
//假设新的质心跟老的质心是一样的,那么相应的计数器加1
if(flag) {
counter = context.getCounter("myCounter", "kmenasCounter");
counter.increment(1l);
}
context.write(null, new Text(sb.toString()));
}
} public static void main(String[] args) throws Exception { Path kMeansPath = new Path("/dsap/middata/kmeans/kMeans"); //初始的质心文件
Path samplePath = new Path("/dsap/middata/kmeans/sample"); //样本文件
//载入聚类中心文件
Center center = new Center();
String centerString = center.loadInitCenter(kMeansPath); int index = 0; //迭代的次数
while(index < 5) { Configuration conf = new Configuration();
conf.set(FLAG, centerString); //将聚类中心的字符串放到configuration中 kMeansPath = new Path("/dsap/middata/kmeans/kMeans" + index); //本次迭代的输出路径。也是下一次质心的读取路径 /**推断输出路径是否存在。假设存在,则删除*/
FileSystem hdfs = FileSystem.get(conf);
if(hdfs.exists(kMeansPath)) hdfs.delete(kMeansPath); Job job = new Job(conf, "kmeans" + index);
job.setJarByClass(KmeansMR.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, samplePath);
FileOutputFormat.setOutputPath(job, kMeansPath);
job.waitForCompletion(true); /**获取自己定义counter的大小,假设等于质心的大小。说明质心已经不会发生变化了,则程序停止迭代*/
long counter = job.getCounters().getGroup("myCounter").findCounter("kmenasCounter").getValue();
if(counter == Center.k) System.exit(0);
/**又一次载入质心*/
center = new Center();
centerString = center.loadCenter(kMeansPath); index ++;
}
System.exit(0);
} public static double distance(double[] a, double[] b) { if(a == null || b == null || a.length != b.length) return Double.MAX_VALUE;
double dis = 0;
for(int i = 0; i < a.length; i++) {
dis += Math.pow(a[i] - b[i], 2);
}
return Math.sqrt(dis);
}
}
5. 结果
产生了两个目录。各自是第一次、第二次迭代后的聚类中心
最后的聚类中心的内容例如以下
版权声明:本文博客原创文章。博客,未经同意,不得转载。
hadoop在实现kmeans算法——一个mapreduce实施的更多相关文章
- 利用Mahout实现在Hadoop上运行K-Means算法
利用Mahout实现在Hadoop上运行K-Means算法 一.介绍Mahout Mahout是Apache下的开源机器学习软件包,目前实现的机器学习算法主要包含有协同过滤/推荐引擎,聚类和分类三个部 ...
- 一起学Hadoop——使用IDEA编写第一个MapReduce程序(Java和Python)
上一篇我们学习了MapReduce的原理,今天我们使用代码来加深对MapReduce原理的理解. wordcount是Hadoop入门的经典例子,我们也不能免俗,也使用这个例子作为学习Hadoop的第 ...
- 在Hadoop上运行基于RMM中文分词算法的MapReduce程序
原文:http://xiaoxia.org/2011/12/18/map-reduce-program-of-rmm-word-count-on-hadoop/ 在Hadoop上运行基于RMM中文分词 ...
- 腾讯公司数据分析岗位的hadoop工作 线性回归 k-means算法 朴素贝叶斯算法 SpringMVC组件 某公司的广告投放系统 KNN算法 社交网络模型 SpringMVC注解方式
腾讯公司数据分析岗位的hadoop工作 线性回归 k-means算法 朴素贝叶斯算法 SpringMVC组件 某公司的广告投放系统 KNN算法 社交网络模型 SpringMVC注解方式 某移动公司实时 ...
- mahout运行测试与kmeans算法解析
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 ...
- mahout运行测试与数据挖掘算法之聚类分析(一)kmeans算法解析
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 ...
- mahout中KMeans算法
本博文主要内容有 1.kmeans算法简介 2.kmeans执行过程 3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解 5.mahout的kmeans算法实现 ...
- [数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现
聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记 ...
- K-Means算法的10个有趣用例
https://www.jianshu.com/p/162c9ec713cf 摘要: 让我们走进K-Means算法的“前世今生”以及和它有关的十个有趣的应用案例. K-means算法具有悠久的历史,并 ...
随机推荐
- .net程序员面试不完全指南
程序员找工作难,想要被成功聘用更难.最常见的办法是经历一次又一次的面试失败后自己琢磨出面试技巧,当然也可以花钱到一些培训机构去接受专业的书面简历和模拟面试的指导.这些方法可能都会奏效,但是却并不是时间 ...
- 几十篇GDI以及MFC自绘的文章
http://www.cnblogs.com/lidabo/category/434801.html
- JQuery 插件之Ajax Autocomplete(ajax自动完成)
平时用百度,谷歌搜索的时候 会有一个下 拉列表进行提示 这是一个非常好的功能 本文要介绍的这个JQuery 插件 名叫Ajax Autocomplete 顾名思义 ajax 也就是用ajax的方式获取 ...
- hdu1695(莫比乌斯)或欧拉函数+容斥
题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...
- 《学习opencv》笔记——矩阵和图像处理——cvMinManLoc,cvMul,cvNot,cvNorm and cvNormalize
矩阵和图像的操作 (1)cvMinManLoc函数 其结构 void cvMinMaxLoc(//取出矩阵中最大最小值 const CvArr* arr,//目标矩阵 double* min_val, ...
- 做SEO推广必须要做的9件事儿
SEO推广是由网站优化网络运营媒体宣传结合的一种技术,而现在恰好就是媒体最为流行,真因为如此很多的站长之知道利用自媒体推广网站,结果推广了几年网站权重只有2到3而已,导致和谐问题的关键就是没有结合其他 ...
- JSTL解析——002——core标签库01
javaEE5之前的版本需要引用JSTL相关的jar包.tld文件等,JAEE5之后就不用这么麻烦了, 如果你的还是不能使用就去官网下载(jstl.jar和standard.jar)这两个jar包,将 ...
- Unicode 字符集与它的编码方式
正式内容開始之前,我们先来了解一个基本概念,编码字符集. 编码字符集:编码字符集是一个字符集,它为每个字符分配一个唯一数字.Unicode 标准的核心是一个编码字符集,字母"A"的 ...
- 读一读Scktsrvr.exe的源程序
读一读Scktsrvr.exe的源程序 使用DELPHI做多层开发的朋友们都应该对Scktsrvr.exe这个程序不陌生的,Borland公司在DELPHI中给出了它的源代码.这是一个900来行的程序 ...
- 鸟哥之安裝 CentOS7.x
http://linux.vbird.org/linux_basic/0157installcentos7.php since 2002/01/01 新手建議 開始閱讀之前 網站導覽 Linux 基礎 ...