HotSpot JVM收集器

上面有7中收集器,分为两块,上面为新生代收集器,下面是老年代收集器。如果两个收集器之间存在连线,就说明它们可以搭配使用。

Serial(串行GC)收集器

Serial收集器是一个新生代收集器,单线程执行,使用复制算法。它在进行垃圾收集时,必须暂停其他所有的工作线程(用户线程)。是Jvm client模式下默认的新生代收集器。对于限定单个            CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

ParNew(并行GC)收集器

ParNew收集器其实就是serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为与Serial收集器一样。

Parallel Scavenge(并行回收GC)收集器

Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行多线程收集器。parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集        器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而parallel Scavenge收集器的目标则是达到一个可控制的吞吐量。吞吐量= 程序运行时间/(程序运行时间 + 垃圾收集时间),虚拟机      总共运行了100分钟。其中垃圾收集花掉1分钟,那吞吐量就是99%。

Serial Old(串行GC)收集器

Serial Old是Serial收集器的老年代版本,它同样使用一个单线程执行收集,使用“标记-整理”算法。主要使用在Client模式下的虚拟机。

Parallel Old(并行GC)收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。

CMS(并发GC)收集器

            CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。CMS收集器是基于“标记-清除”算法实现的,
整个收集过程大致分为4个步骤:
                    ①.初始标记(CMS initial mark)
                    ②.并发标记(CMS concurrenr mark)
                    ③.重新标记(CMS remark)
                    ④.并发清除(CMS concurrent sweep)
           其中初始标记、重新标记这两个步骤任然需要停顿其他用户线程。初始标记仅仅只是标记出GC ROOTS能直接关联到的对象,速度很快,并发标记阶段是进行GC ROOTS 根搜索算法阶段,会判定对象是否存活。而重新标记阶段则是为了修正并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间会被初始标记阶段稍长,但比并发标记  阶段要短。
     由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以整体来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
CMS收集器的优点:并发收集、低停顿,但是CMS还远远达不到完美,器主要有三个显著缺点:
CMS收集器对CPU资源非常敏感。在并发阶段,虽然不会导致用户线程停顿,但是会占用CPU资源而导致引用程序变慢,总吞吐量下降。CMS默认启动的回收线程数是:(CPU数量+3) / 4。
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure“,失败后而导致另一次Full  GC的产生。由于CMS并发清理阶段用户线程还在运行,伴随程序的运行自热会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在本次收集中处理它们,只好留待下一次GC时将其清理掉。这一部分垃圾称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,
即需要预留足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分内存空间提供并发收集时的程序运作使用。在默认设置下,CMS收集器在老年代使用了68%的空间时就会被激活,也可以通过参数-XX:CMSInitiatingOccupancyFraction的值来提供触发百分比,以降低内存回收次数提高性能。要是CMS运行期间预留的内存无法满足程序其他线程需要,就会出现“Concurrent Mode Failure”失败,这时候虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CMSInitiatingOccupancyFraction设置的过高将会很容易导致“Concurrent Mode Failure”失败,性能反而降低。
最后一个缺点,CMS是基于“标记-清除”算法实现的收集器,使用“标记-清除”算法收集后,会产生大量碎片。空间碎片太多时,将会给对象分配带来很多麻烦,比如说大对象,内存空间找不到连续的空间来分配不得不提前触发一次Full  GC。为了解决这个问题,CMS收集器提供了一个-XX:UseCMSCompactAtFullCollection开关参数,用于在Full  GC之后增加一个碎片整理过程,还可通过-XX:CMSFullGCBeforeCompaction参数设置执行多少次不压缩的Full  GC之后,跟着来一次碎片整理过程。

G1收集器

G1(Garbage First)收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。还有一个特点之前的收集器进行收集的范围都是整个新生代或老年代,而G1将整个Java堆(包括新生代,老年代)。

 

垃圾收集器参数总结

      -XX:+<option> 启用选项
      -XX:-<option> 不启用选项
      -XX:<option>=<number> 
-XX:<option>=<string>

参数 描述

-XX:+UseSerialGC

Jvm运行在Client模式下的默认值,打开此开关后,使用Serial + Serial Old的收集器组合进行内存回收
-XX:+UseParNewGC 打开此开关后,使用ParNew + Serial Old的收集器进行垃圾回收
-XX:+UseConcMarkSweepGC 使用ParNew + CMS +  Serial Old的收集器组合进行内存回收,Serial Old作为CMS出现“Concurrent Mode Failure”失败后的后备收集器使用。
-XX:+UseParallelGC Jvm运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge +  Serial Old的收集器组合进行回收
-XX:+UseParallelOldGC 使用Parallel Scavenge +  Parallel Old的收集器组合进行回收
-XX:SurvivorRatio 新生代中Eden区域与Survivor区域的容量比值,默认为8,代表Eden:Subrvivor = 8:1
-XX:PretenureSizeThreshold 直接晋升到老年代对象的大小,设置这个参数后,大于这个参数的对象将直接在老年代分配
-XX:MaxTenuringThreshold 晋升到老年代的对象年龄,每次Minor GC之后,年龄就加1,当超过这个参数的值时进入老年代
-XX:UseAdaptiveSizePolicy 动态调整java堆中各个区域的大小以及进入老年代的年龄
-XX:+HandlePromotionFailure 是否允许新生代收集担保,进行一次minor gc后, 另一块Survivor空间不足时,将直接会在老年代中保留
-XX:ParallelGCThreads 设置并行GC进行内存回收的线程数
-XX:GCTimeRatio GC时间占总时间的比列,默认值为99,即允许1%的GC时间,仅在使用Parallel Scavenge 收集器时有效
-XX:MaxGCPauseMillis 设置GC的最大停顿时间,在Parallel Scavenge 收集器下有效
-XX:CMSInitiatingOccupancyFraction 设置CMS收集器在老年代空间被使用多少后出发垃圾收集,默认值为68%,仅在CMS收集器时有效,-XX:CMSInitiatingOccupancyFraction=70
-XX:+UseCMSCompactAtFullCollection 由于CMS收集器会产生碎片,此参数设置在垃圾收集器后是否需要一次内存碎片整理过程,仅在CMS收集器时有效
-XX:+CMSFullGCBeforeCompaction 设置CMS收集器在进行若干次垃圾收集后再进行一次内存碎片整理过程,通常与UseCMSCompactAtFullCollection参数一起使用
-XX:+UseFastAccessorMethods 原始类型优化
-XX:+DisableExplicitGC 是否关闭手动System.gc
-XX:+CMSParallelRemarkEnabled 降低标记停顿
-XX:LargePageSizeInBytes 内存页的大小不可设置过大,会影响Perm的大小,-XX:LargePageSizeInBytes=128m

Client、Server模式默认GC

  新生代GC方式 老年代和持久GC方式

Client

Serial 串行GC Serial Old 串行GC
Server Parallel Scavenge  并行回收GC Parallel Old 并行GC

Sun/Oracle JDK GC组合方式

  新生代GC方式 老年代和持久GC方式

-XX:+UseSerialGC

Serial 串行GC Serial Old 串行GC
-XX:+UseParallelGC Parallel Scavenge  并行回收GC Serial Old  并行GC
-XX:+UseConcMarkSweepGC ParNew 并行GC CMS 并发GC 
当出现“Concurrent Mode Failure”时
采用Serial Old 串行GC
-XX:+UseParNewGC ParNew 并行GC Serial Old 串行GC
-XX:+UseParallelOldGC Parallel Scavenge  并行回收GC Parallel Old 并行GC
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
Serial 串行GC CMS 并发GC 
当出现“Concurrent Mode Failure”时
采用Serial Old 串行GC

转自  http://blog.csdn.net/java2000_wl/article/details/8030172

Java虚拟机学习 - 垃圾收集器的更多相关文章

  1. Java虚拟机学习 - 垃圾收集器 (4)

    HotSpot JVM收集器 上面有7中收集器,分为两块,上面为新生代收集器,下面是老年代收集器.如果两个收集器之间存在连线,就说明它们可以搭配使用. Serial(串行GC)收集器 Serial收集 ...

  2. 《深入理解Java虚拟机》垃圾收集器

    说起垃圾收集(Garbage Collection,GC),大部分人都把这项技术当做Java语言的伴生产物.事实上,GC的历史远比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态 ...

  3. 《深入理解Java虚拟机》——垃圾收集器与内存分配策略

    GC需要完成: 哪些内存需要回收 什么时候回收 如何回收 如何确定对象不再使用 引用计数算法 给对象添加一个引用计数器,当有一个地方引用它时,计数器值进行加1操作:当引用失效时,计数器值进行减1操作: ...

  4. 深入理解java虚拟机之垃圾收集器

    Java一个重要的优势就是通过垃圾管理器GC (Garbage Collection)自动管理和回收内存,程序员无需通过调用方法来释放内存.也因此很好多的程序员可能会认为Java程序不会出现内存泄漏的 ...

  5. 深入理解Java虚拟机:垃圾收集器与内存分配策略

    目录 3.2 对象已死吗 判断一个对象是否可被回收 引用类型 finalize() 回收方法区 3.3. 垃圾收集算法 1.Mark-Sweep(标记-清除)算法 2.Copying(复制)算法 3. ...

  6. java虚拟机(六)--垃圾收集器和内存分配策略

    目前没有完美的收集器,不同的厂商.版本的虚拟机提供的垃圾收集器会有很大的差别,用户根据自己应用特点和要求组合出各个年代所使用 的收集器.基于jdk1.7Update14之后的虚拟机. HotSpot的 ...

  7. 深入理解Java虚拟机笔记——垃圾收集器与内存分配策略

    目录 判断对象是否死亡 引用计数器算法 可达性分析算法 各种引用 回收方法区 垃圾收集算法 标记-清除算法 复制算法 标记-整理算法 分代收集算法 HotSpot算法实现 枚举根节点 GC停顿(Sto ...

  8. 深入JAVA虚拟机笔记-垃圾收集器与内存分配策略

    第三章:垃圾收集器与内存分配 问题:1.哪些内存需要回收 2.什么时候回收 3.怎么回收 回收方法区:

  9. 深入理解java虚拟机(3)垃圾收集器与内存分配策略

    一.根搜索算法: (1)定义:通过一系列名为"GC Roots"的对象作为起点,从这些起点开始向下搜索,搜索走过的路径称为引用链,当一个对象到GC Roots没有任何引用链相连的时 ...

随机推荐

  1. 微信网页授权redirect_uri错误的可能错误之一

    授权回调页面域名 后面不要加/ 加了/ 就会出错.

  2. Grunt构建工具能做哪些事?

    Grunt到底有什么作用?一般用来干嘛? 很多前端的工作,包括Less编译.javascript压缩.Css压缩等零零碎碎的工作, 都可以让Grunt来做. 实际上在项目开发中,一般是前端代码 与 后 ...

  3. 二叉树最大路径和-Binary Tree Maximum Path Sum

    Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...

  4. 纠错输出编码法ECOC

    纠错输出编码法(Error-Correcting Output Codes,ECOC)不仅能够将多类分类问题转化为多个两类问题,而且利用纠错输出码本身具有纠错能力的特性,可以提高监督学习算法的预测精度 ...

  5. NodeMCU之旅(三):响应配置按钮

    引言 在之前的代码中,要连接的WIFI信息都已写死在代码里,这显然不能适应我们的需求.所以需要想个办法让用户可以配置这些信息. WIFI工作模式 NodeMCU支持STATION,SOFTAP,STA ...

  6. php绘图-报表

    1.PHP报表的创建,通过绘图,过程 要先开启gb库, 可以使用jpgraph(绘图框架)快速制作一些图形 报表的作用:可以制作一些统计图,地形图,分布图等,还可以做验证码图片(通过在画布上加字和干扰 ...

  7. JS 继承(类式 与 原型式)

    1. /* -- 类式继承 -- *///先声明一个超类 function Person(name) { this.name = name;}//给这个超类的原型对象上添加方法 getName Per ...

  8. javaweb入门实例---servlet例子

    1.编写servlet: TreeDataServlet.java package com.maggie.tree; import java.io.IOException; import javax. ...

  9. 部署Sharding分片

    这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群. MongoDB 的数据分块称为 ch ...

  10. 纯CSS3实现不错的表单验证效果

    这是补充HTML5基础知识的系列内容,其他为: 一.HTML5-- 新的结构元素 二.HTML5-- figure.time.details.mark 三.HTML5-- details活学活用 四. ...