HDU 4686 Arc of Dream(递归矩阵加速)
标题效果:你就是给你一程了两个递推公式公式,第一个让你找到n结果项目。
注意需要占用该公式的复发和再构造矩阵。
Arc of Dream
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2092 Accepted Submission(s): 664
where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
4
134
1902
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) #define mod 1000000007 const int maxn = 210; using namespace std; struct matrix
{
LL f[10][10];
}; matrix mul(matrix a, matrix b, int n)
{
matrix c;
memset(c.f, 0, sizeof(c.f));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j];
c.f[i][j] %= mod;
}
}
return c;
} matrix pow_mod(matrix a, LL b, int n)
{
matrix s;
memset(s.f, 0 , sizeof(s.f));
for(int i = 0; i < n; i++) s.f[i][i] = 1LL;
while(b)
{
if(b&1) s = mul(s, a, n);
a = mul(a, a, n);
b >>= 1;
}
return s;
} matrix Add(matrix a,matrix b, int n)
{
matrix c;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
c.f[i][j] = a.f[i][j]+b.f[i][j];
c.f[i][j] %= mod;
}
}
return c;
} int main()
{
LL n;
LL a, ax, ay;
LL b, bx, by;
while(~scanf("%I64d",&n))
{
scanf("%I64d %I64d %I64d",&a, &ax, &ay);
scanf("%I64d %I64d %I64d",&b, &bx, &by);
a %= mod;
ax %= mod;
ay %= mod;
b %= mod;
bx %= mod;
by %= mod;
LL ff = a*b%mod;
LL x = (a*ax+ay)%mod;
LL y = (b*bx+by)%mod;
LL pp = (x*y)%mod;
if(n == 0)
{
puts("0");
continue;
}
matrix c;
memset(c.f, 0 ,sizeof(c.f));
c.f[0][0] = ax*bx%mod;
c.f[0][1] = ax*by%mod;
c.f[0][2] = ay*bx%mod;
c.f[0][3] = ay*by%mod;
///c.f[0][4] = 1LL;
c.f[1][1] = ax;
c.f[1][3] = ay;
c.f[2][2] = bx;
c.f[2][3] = by;
c.f[3][3] = 1LL;
c.f[4][0] = 1LL;
c.f[4][4] = 1LL;
matrix d = pow_mod(c, n-1LL, 5);
LL sum = 0LL; sum += ((d.f[4][0]*pp%mod)+(d.f[4][4]*ff%mod))%mod;
sum += ((d.f[4][1]*x%mod) + (d.f[4][2]*y%mod) + d.f[4][3]%mod)%mod;
printf("%I64d\n",(sum+mod)%mod);
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
HDU 4686 Arc of Dream(递归矩阵加速)的更多相关文章
- hdu 4686 Arc of Dream(矩阵快速幂乘法)
Problem Description An Arc of Dream is a curve defined by following function: where a0 = A0 ai = ai- ...
- HDU 4686 Arc of Dream (矩阵快速幂)
Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- HDU 4686 Arc of Dream(矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 思路: #include <iostream>#include <cs ...
- HDU 4686 Arc of Dream(矩阵)
Arc of Dream [题目链接]Arc of Dream [题目类型]矩阵 &题解: 这题你做的复杂与否很大取决于你建的矩阵是什么样的,膜一发kuangbin大神的矩阵: 还有几个坑点: ...
- HDU 4686 Arc of Dream (2013多校9 1001 题,矩阵)
Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...
- HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...
- HDU 4686 Arc of Dream(快速幂矩阵)
题目链接 再水一发,构造啊,初始化啊...wa很多次啊.. #include <cstring> #include <cstdio> #include <string&g ...
- hdu 4686 Arc of Dream 自己推 矩阵快速幂
A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0, A.mat[0][4] = 0; A.mat[1][0] = 0 ...
随机推荐
- DecimalFormat
public class TestDemo { public static void main(String[] args) { String format = new DecimalFormat(& ...
- selenium让人摸不着头脑的问题
selenium让人摸不着头脑的问题 问题一 使用webdriver驱动firefox浏览器时如果不设置参数,默认使用的Firefox的profile和平时打开浏览器使用的firefox不一样,如果要 ...
- libevent安装总结 - jinfg2008的专栏 - 博客频道 - CSDN.NET
libevent安装总结 - jinfg2008的专栏 - 博客频道 - CSDN.NET libevent安装总结 分类: linux 系统配置 2013-02-13 22:37 99人阅读 评论( ...
- cocos2dx使用tolua关于字符串处理的一个问题
正在使用cocos2dx的tolua binding在此过程中发现的一个问题.假设一回或输入是std::string当我们不同意包括二进制数据,和std::string我同意,这样一来就导致了不正确的 ...
- ContentType ,charset和pageEncoding的区别(转)
========================说法一=========================== ContentType 属性指定响应的 HTTP 内容类型.如果未指定 ContentTy ...
- Mongodb数据备份恢复
Mongodb数据备份恢复 一.MongoDB数据库导入导出操作 1.导出数据库 twangback为备份的文件夹 命令: mongodump -h 127.0.0.1[服务器IP] -d advie ...
- Nagios+pnp4nagios+rrdtool 安装配置nagios被监控端NRPE配置(二)
NRPE监控插件基础 NRPE总共由两部分组成: (1).check_nrpe插件,运行在监控主机上. (2).NRPE daemon,运行在远程的linux主机上(通常就是被监控机) 整个的监控过程 ...
- js 自定义方法 实现停留几秒 sleep
function sleep(numberMillis) { var now = new Date(); var exitTime = now.getTime() + numberMillis; wh ...
- Linux 命令 快捷命令综合
FTP开机启动 启动要让FTP每次开机自动启动,运行命令: chkconfig --level 35 vsftpd on linux 关机 1.halt linux 注销 1.logout linu ...
- Xamarin For Visual Studio 3.7.165 完整离线破解版
原文 Xamarin For Visual Studio 3.7.165 完整离线破解版 Xamarin For Visual Studio就是原本的Xamarin For Android 以及 Xa ...