概要

AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray这3个数组类型的原子类的原理和用法相似。本章以AtomicLongArray对数组类型的原子类进行介绍。内容包括:
AtomicLongArray介绍和函数列表
AtomicLongArray源码分析(基于JDK1.7.0_40)
AtomicLongArray示例

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3514604.html

AtomicLongArray介绍和函数列表

在"Java多线程系列--“JUC原子类”02之 AtomicLong原子类"中介绍过,AtomicLong是作用是对长整形进行原子操作。而AtomicLongArray的作用则是对"长整形数组"进行原子操作。

AtomicLongArray函数列表

// 创建给定长度的新 AtomicLongArray。
AtomicLongArray(int length)
// 创建与给定数组具有相同长度的新 AtomicLongArray,并从给定数组复制其所有元素。
AtomicLongArray(long[] array) // 以原子方式将给定值添加到索引 i 的元素。
long addAndGet(int i, long delta)
// 如果当前值 == 预期值,则以原子方式将该值设置为给定的更新值。
boolean compareAndSet(int i, long expect, long update)
// 以原子方式将索引 i 的元素减1。
long decrementAndGet(int i)
// 获取位置 i 的当前值。
long get(int i)
// 以原子方式将给定值与索引 i 的元素相加。
long getAndAdd(int i, long delta)
// 以原子方式将索引 i 的元素减 1。
long getAndDecrement(int i)
// 以原子方式将索引 i 的元素加 1。
long getAndIncrement(int i)
// 以原子方式将位置 i 的元素设置为给定值,并返回旧值。
long getAndSet(int i, long newValue)
// 以原子方式将索引 i 的元素加1。
long incrementAndGet(int i)
// 最终将位置 i 的元素设置为给定值。
void lazySet(int i, long newValue)
// 返回该数组的长度。
int length()
// 将位置 i 的元素设置为给定值。
void set(int i, long newValue)
// 返回数组当前值的字符串表示形式。
String toString()
// 如果当前值 == 预期值,则以原子方式将该值设置为给定的更新值。
boolean weakCompareAndSet(int i, long expect, long update)

AtomicLongArray源码分析(基于JDK1.7.0_40)

AtomicLongArray的完整源码

 /*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent.atomic;
import sun.misc.Unsafe;
import java.util.*; /**
* A {@code long} array in which elements may be updated atomically.
* See the {@link java.util.concurrent.atomic} package specification
* for description of the properties of atomic variables.
* @since 1.5
* @author Doug Lea
*/
public class AtomicLongArray implements java.io.Serializable {
private static final long serialVersionUID = -2308431214976778248L; private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final int base = unsafe.arrayBaseOffset(long[].class);
private static final int shift;
private final long[] array; static {
int scale = unsafe.arrayIndexScale(long[].class);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
shift = 31 - Integer.numberOfLeadingZeros(scale);
} private long checkedByteOffset(int i) {
if (i < 0 || i >= array.length)
throw new IndexOutOfBoundsException("index " + i); return byteOffset(i);
} private static long byteOffset(int i) {
return ((long) i << shift) + base;
} /**
* Creates a new AtomicLongArray of the given length, with all
* elements initially zero.
*
* @param length the length of the array
*/
public AtomicLongArray(int length) {
array = new long[length];
} /**
* Creates a new AtomicLongArray with the same length as, and
* all elements copied from, the given array.
*
* @param array the array to copy elements from
* @throws NullPointerException if array is null
*/
public AtomicLongArray(long[] array) {
// Visibility guaranteed by final field guarantees
this.array = array.clone();
} /**
* Returns the length of the array.
*
* @return the length of the array
*/
public final int length() {
return array.length;
} /**
* Gets the current value at position {@code i}.
*
* @param i the index
* @return the current value
*/
public final long get(int i) {
return getRaw(checkedByteOffset(i));
} private long getRaw(long offset) {
return unsafe.getLongVolatile(array, offset);
} /**
* Sets the element at position {@code i} to the given value.
*
* @param i the index
* @param newValue the new value
*/
public final void set(int i, long newValue) {
unsafe.putLongVolatile(array, checkedByteOffset(i), newValue);
} /**
* Eventually sets the element at position {@code i} to the given value.
*
* @param i the index
* @param newValue the new value
* @since 1.6
*/
public final void lazySet(int i, long newValue) {
unsafe.putOrderedLong(array, checkedByteOffset(i), newValue);
} /**
* Atomically sets the element at position {@code i} to the given value
* and returns the old value.
*
* @param i the index
* @param newValue the new value
* @return the previous value
*/
public final long getAndSet(int i, long newValue) {
long offset = checkedByteOffset(i);
while (true) {
long current = getRaw(offset);
if (compareAndSetRaw(offset, current, newValue))
return current;
}
} /**
* Atomically sets the element at position {@code i} to the given
* updated value if the current value {@code ==} the expected value.
*
* @param i the index
* @param expect the expected value
* @param update the new value
* @return true if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(int i, long expect, long update) {
return compareAndSetRaw(checkedByteOffset(i), expect, update);
} private boolean compareAndSetRaw(long offset, long expect, long update) {
return unsafe.compareAndSwapLong(array, offset, expect, update);
} /**
* Atomically sets the element at position {@code i} to the given
* updated value if the current value {@code ==} the expected value.
*
* <p>May <a href="package-summary.html#Spurious">fail spuriously</a>
* and does not provide ordering guarantees, so is only rarely an
* appropriate alternative to {@code compareAndSet}.
*
* @param i the index
* @param expect the expected value
* @param update the new value
* @return true if successful.
*/
public final boolean weakCompareAndSet(int i, long expect, long update) {
return compareAndSet(i, expect, update);
} /**
* Atomically increments by one the element at index {@code i}.
*
* @param i the index
* @return the previous value
*/
public final long getAndIncrement(int i) {
return getAndAdd(i, 1);
} /**
* Atomically decrements by one the element at index {@code i}.
*
* @param i the index
* @return the previous value
*/
public final long getAndDecrement(int i) {
return getAndAdd(i, -1);
} /**
* Atomically adds the given value to the element at index {@code i}.
*
* @param i the index
* @param delta the value to add
* @return the previous value
*/
public final long getAndAdd(int i, long delta) {
long offset = checkedByteOffset(i);
while (true) {
long current = getRaw(offset);
if (compareAndSetRaw(offset, current, current + delta))
return current;
}
} /**
* Atomically increments by one the element at index {@code i}.
*
* @param i the index
* @return the updated value
*/
public final long incrementAndGet(int i) {
return addAndGet(i, 1);
} /**
* Atomically decrements by one the element at index {@code i}.
*
* @param i the index
* @return the updated value
*/
public final long decrementAndGet(int i) {
return addAndGet(i, -1);
} /**
* Atomically adds the given value to the element at index {@code i}.
*
* @param i the index
* @param delta the value to add
* @return the updated value
*/
public long addAndGet(int i, long delta) {
long offset = checkedByteOffset(i);
while (true) {
long current = getRaw(offset);
long next = current + delta;
if (compareAndSetRaw(offset, current, next))
return next;
}
} /**
* Returns the String representation of the current values of array.
* @return the String representation of the current values of array
*/
public String toString() {
int iMax = array.length - 1;
if (iMax == -1)
return "[]"; StringBuilder b = new StringBuilder();
b.append('[');
for (int i = 0; ; i++) {
b.append(getRaw(byteOffset(i)));
if (i == iMax)
return b.append(']').toString();
b.append(',').append(' ');
}
} }

AtomicLongArray的代码很简单,下面仅以incrementAndGet()为例,对AtomicLong的原理进行说明。
incrementAndGet()源码如下:

public final long incrementAndGet(int i) {
return addAndGet(i, 1);
}

说明:incrementAndGet()的作用是以原子方式将long数组的索引 i 的元素加1,并返回加1之后的值。

addAndGet()源码如下:

public long addAndGet(int i, long delta) {
// 检查数组是否越界
long offset = checkedByteOffset(i);
while (true) {
// 获取long型数组的索引 offset 的原始值
long current = getRaw(offset);
// 修改long型值
long next = current + delta;
// 通过CAS更新long型数组的索引 offset的值。
if (compareAndSetRaw(offset, current, next))
return next;
}
}

说明:addAndGet()首先检查数组是否越界。如果没有越界的话,则先获取数组索引i的值;然后通过CAS函数更新i的值。

getRaw()源码如下:

private long getRaw(long offset) {
return unsafe.getLongVolatile(array, offset);
}

说明:unsafe是通过Unsafe.getUnsafe()返回的一个Unsafe对象。通过Unsafe的CAS函数对long型数组的元素进行原子操作。如compareAndSetRaw()就是调用Unsafe的CAS函数,它的源码如下:

private boolean compareAndSetRaw(long offset, long expect, long update) {
return unsafe.compareAndSwapLong(array, offset, expect, update);
}

AtomicLongArray示例

 // LongArrayTest.java的源码
import java.util.concurrent.atomic.AtomicLongArray; public class LongArrayTest { public static void main(String[] args){ // 新建AtomicLongArray对象
long[] arrLong = new long[] {10, 20, 30, 40, 50};
AtomicLongArray ala = new AtomicLongArray(arrLong); ala.set(0, 100);
for (int i=0, len=ala.length(); i<len; i++)
System.out.printf("get(%d) : %s\n", i, ala.get(i)); System.out.printf("%20s : %s\n", "getAndDecrement(0)", ala.getAndDecrement(0));
System.out.printf("%20s : %s\n", "decrementAndGet(1)", ala.decrementAndGet(1));
System.out.printf("%20s : %s\n", "getAndIncrement(2)", ala.getAndIncrement(2));
System.out.printf("%20s : %s\n", "incrementAndGet(3)", ala.incrementAndGet(3)); System.out.printf("%20s : %s\n", "addAndGet(100)", ala.addAndGet(0, 100));
System.out.printf("%20s : %s\n", "getAndAdd(100)", ala.getAndAdd(1, 100)); System.out.printf("%20s : %s\n", "compareAndSet()", ala.compareAndSet(2, 31, 1000));
System.out.printf("%20s : %s\n", "get(2)", ala.get(2));
}
}

运行结果

get(0) : 100
get(1) : 20
get(2) : 30
get(3) : 40
get(4) : 50
getAndDecrement(0) : 100
decrementAndGet(1) : 19
getAndIncrement(2) : 30
incrementAndGet(3) : 41
addAndGet(100) : 199
getAndAdd(100) : 19
compareAndSet() : true
get(2) : 1000

更多内容

1. Java多线程系列--“JUC原子类”01之 框架

2. Java多线程系列--“JUC原子类”02之 AtomicLong原子类

3. Java多线程系列目录(共xx篇)

Java多线程系列--“JUC原子类”03之 AtomicLongArray原子类的更多相关文章

  1. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  2. Java多线程系列 JUC线程池03 线程池原理解析(二)

    转载  http://www.cnblogs.com/skywang12345/p/3509954.html  http://www.cnblogs.com/skywang12345/p/351294 ...

  3. Java多线程系列--“JUC线程池”06之 Callable和Future

    概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...

  4. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

  5. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  6. Java多线程系列--“JUC原子类”04之 AtomicReference原子类

    概要 本章对AtomicReference引用类型的原子类进行介绍.内容包括:AtomicReference介绍和函数列表AtomicReference源码分析(基于JDK1.7.0_40)Atomi ...

  7. Java多线程系列--“JUC原子类”05之 AtomicLongFieldUpdater原子类

    概要 AtomicIntegerFieldUpdater, AtomicLongFieldUpdater和AtomicReferenceFieldUpdater这3个修改类的成员的原子类型的原理和用法 ...

  8. Java多线程系列--“JUC原子类”02之 AtomicLong原子类

    概要 AtomicInteger, AtomicLong和AtomicBoolean这3个基本类型的原子类的原理和用法相似.本章以AtomicLong对基本类型的原子类进行介绍.内容包括:Atomic ...

  9. java 多线程系列---JUC原子类(三)之AtomicLongArray原子类

    AtomicLongArray介绍和函数列表 在"Java多线程系列--“JUC原子类”02之 AtomicLong原子类"中介绍过,AtomicLong是作用是对长整形进行原子操 ...

随机推荐

  1. [置顶]PADS PCB功能使用技巧系列之NO.004- 如何做到20H规则?

    电源层与地层之间变化的电场在板边缘会向外辐射电磁干扰(EMI),称为边沿效应.20H规则可将70%的电场限制在接地层边沿内,100H可达到98%. (1)在Layout中,选择菜单栏Setup -&g ...

  2. hdu 5719(Arrange)(冷静分析)

    A数组显示从0到i的最小值B数组显示从0到i的最大值由此可得:A数组是单调不增的(怎么也会不使得最小值变大)B数组是单调不减的.设premin和premax为i位以前的最小值和最大值.可以得出以下几点 ...

  3. linux-13基础命令之-touch,mkdir

    1.  touch 命令 用于创建空白文件与修改文件时间,格式:touch[选项][文件]: linux 下文件时间有三种 @1.更改时间(mtime):内容修改时间: @2.更改权限(ctime): ...

  4. MySQL 升级详细步骤 (包括 Percona)

    MySQL 升级步骤 MySQL 5.1.72 升级到 MySQL 5.5.36 鉴于我在升级的时候遇到的麻烦问题,我觉得有必要把一些细节说清楚,免得引起误解了.感觉官方文档上的升级步骤写的比较简单, ...

  5. java获取路径的方法

    package com.zjf; import java.io.File; public class GetPath { public static void getPath() { //方式一 Sy ...

  6. 备库Seconds_Behind_Master的计算

    背景 在mysql主备环境下,主备同步过程如下,主库更新产生binlog, 备库io线程拉取主库binlog生成relay log.备库sql线程执行relay log从而保持和主库同步. 理论上主库 ...

  7. Linux 2.6 源码学习-内存管理-buddy算法

    核心数据结构 linux 2.6 的内存管理支持NUMA(Non Uniform Memory Access Achitecture),即非一致内存访问体系,在该体系中存在多个CPU,并且拥有分离的存 ...

  8. javascript中this指针探讨

    javascript是一门类java语言有很多跟java相类似的特点,但也仅是类似而已,真正使用中还是有很大的差别.this指针常常让很多初学者抓狂,本人也曾为此困惑不解,查找过很多资料,今天在这里总 ...

  9. FusionCharts简单教程(六)------加载外部Logo

    一.加载外部文件Logo       在使用FusionCharts时,我们可能需要在加载图像的时候需要在图表中显示标识.图片等等.这里我们可以使用logoURL属性来实现.如: <chart ...

  10. Unity3D热更新全书-何谓热更新,为何热更新,如何热更新

    首先来赞叹一下中文,何谓为何如何,写完才发现这三个词是如此的有规律. 为何赞叹中文?因为这是一篇针对新手程序员的文字,是一节语文课. 然后来做一下说文解字,也就是 何谓热更新 热更新,每个程序员一听就 ...