3_for循环的拓展应用
HTML代码:
<input type="button" value="1"/>
<input type="button" value="2"/>
<input type="button" value="3"/>
JS代码:
window.onload=function(){
var oBtn=document.getElementsByTagName('input');
var i=0;
for(i=0;i<oBtn.length;i++){
oBtn[i].onclick=function(){
alert(this.value)
};
};
}
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOMAAAFRCAIAAAAJmY3RAAAgAElEQVR4nO3deVxTZ6Lw8ePMHWfeuZ957513bu/cee+9M7Qd6W6vVd47vXWrba1o26mx1Vpauym1tYu1aiu4VwWRulQhgSQIBBAkQSDsa4AkJIEQICFkg7AkkIWEhIRVkPePR04PSUBUlnM8z++TTyvZOHC+PDnn5JwTZBwGI0LIQk8ADDajoFQYMYJSYcTIt9SxsbGbN28O3003b94cGxubybck7pPDFjAfUsfGxoaHhw0GA41GC5pZNBrNYDAMDw/fcZYT98lhC5sPqTdv3jQYDMHBwS0tLbdu3brjU4yNjVVUVAQHBxsMhps3b05/Z/Dk274MOVlh/bZ6/I6XfcJbezJbtn0ZMvMnn6Mphy1sPqSOjIzExMS0tLSMjIw4nU6HV729vdgv+/r6bt68yeVyY2JiRkZGpv9+4Mn3l9ouNYyWtQ1Wdg5Pf8lrHT5XP/Z+inLmTz5HUw5b2HxLDQoKGh4ets84MNeDgoJmgikoKGgvf7SqfYDfOWSy9U7/zLXGgaK2oS8rhmf+5HM05bCFbUqpNput525yOp0zx/R52QCvfdA6s3jtg1/whmb+5HM05bCFDUqFUonRlFLNUyQSiRAE8XnT3Uq1YBKLxchE165dw97Eax/8vGxg5k/uPWEpKSnok4tEonubctjCdtdSwfyedako0GvXriEIIhaLZ0sq+NMCQAFZKJWI3YXUU6dOIQjy/vvv37/Uz0r7y9sH0QempKQEBASgXwYEBKSkpKBflrcPflbafz9jKjafwyqUiv/uQirQMyuv/h5SvTHNkdRTp05h/ySgVALle8t/UFCQaYqqq6sRBPF5U1BQ0Ew2zgcFBe0ucZe3DXT76uTJkwEBAdhrytsGdpe4Z/7k00w2giDV1dX3NuWwhW3BpJbpB7q8OnnyJIIgHleW6WdBKggsp0KpRGxKqT4HvO7ubqFQiCCIz5vuUypgKhQK71PqVFMOAt/iHqYctrBNKdU4RQKBAEEQnzfNHNOnxa4yfT/2sSdOnJjqacv0/Z8Wu2b+5FNNOQhBEIFAcA9TDlvYcCEVPKc3oFmRymKx0AkWCAQrVqy4tymHLWxTSjVMEZ/PRxDE5013KxX7QGRyLBYLvfVupXpPGBiwQfc85bCF7a6lTtM9S52++5c6K1MOW9h8SB0dHQ0KCuq8+4KCgkZHR6f/fuDJg4v6Slv7Z/i0pa39wUV9M3/yOZpy2MIGpc50ymELm++jU4KCgjQaTevdpNPpgoKCZnIASVBQ0Md59uxmJ7/F1nKn+C227GbnJ/m9M3/yOZpy2MLmWyqTyeRwOLoZ19rampGRwWQyZ4KJyWS+y1Ic4dk4TY5iXd/0F06T40hl77ssxcyffI6mHLaw+ZB669Yts9kcHBzM4XCam5u1d0qj0WRkZAQHB5vN5jsevQSefNuXIR8mNXyUa/s4z37Hy4dJjdu+DJn5k8/RlMMWNt9Sb926ZbFYTpw4sWEGbdq0iclkWiwW8MDpvx/65GFhYXP35HMx5bCFzffx/rfutZl8S+I+OWwBg+dQgREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcQISoURIygVRoygVBgxglJhxAhKhREjKBVGjKBUGDGCUmHECEqFESMoFUaMoFQYMYJSYcRonqTemtwYjFB5zL75MePRXEm95Sv0Jx8dHb0JI0ijo6NTkZ1PuLMv1Vvn6EQ3b94cGRkZGRkZHh4eghGk4eFhMNeAWtD8D7SzKdUnUPB3ieocHBwcGBgYGBjo7+/v7+93u90uGC5zu91gHoH5NTg4iKpFx1pvsrPIyaNZk+rTqAdQt9vtdrv7+vr6+vocE/XCcBk6g8D8AvPOm6y319kS5dHsSPVgihpFgbpcLqfT6XA47Ha7zWazWq1Wq9VisZjNZrPZbILhLDBfLBYLmFM2m81utzscDqfTCYZbQBbrda6xzoJUb6ZgHAVGwfDZ29vb09NjtVrNZnN3d7fRaDQYDAaDoWOi9vb2DhjOAvPIaDR2d3ebzWar1drT0wOGWzDKDgwMgPF1HrDer1SfTNGh1Ol02u32np4es9nc1dUFaLa1tbW2tup0Op1Op5lIrVZrYDgLzKPW1ta2tjYAt6ury2w29/T02O12p9OJHVznGuvsSMW+6A8NDfX397tcLofDgRrt7Oxsa2traWnRaDQqlUqpVCoUCrlc3tjY2NDQ0NDQIJPJGmB4qrGxUS6XKxQKpVKpUqk0Gk1LS0tbW1tnZyfq1eFwuFyu/v7+oaEh78WAWQGKdl9Sp2La19cHXu5NJpPBYNDr9RqNpqmpqaGhQSqVSiQSoVDI5/OrqqoqKysrKip4MJxVUVFRWVnJ5/Orq6slEkldXV1DQ0NTU5NKpdLpdG1tbQaDwWQygYWBvr6+ecA6C1J9MrVarV1dXe3t7Vqttqmpqba2ViAQlJWVFRQU5OTkZGZmZmRkcDic9PT069evp8Fw1vXr19ls9o0bN7hcbkFBQXl5uUAgkEgkMplMoVCo1eqWlpaOjo6uri6r1eoTK36lglUol8uFMm1ra1Or1fX19Xw+v7CwMCMjg8ViMRgMKpV6+fLlS5cuXbx48fz58z/++GMkDGf9+OOPFy5cuHz5Mo1Gi4+PT0tL43K5JSUlfD6/pqamvr5eqVRqtdr29nYUq8vlAitYeJc6PDw8MDAA1vRRqSqVSigU5uTkJCQknD9//tChQw8//PDDDz/8yOQeJXgeP87Dk/Mjcl988cWxY8eoVGpKSgqXyy0rKxMKhVKpVC6XazQavV5vNBrRYXVgYABdtcKp1JGRkcHBQbfbDdaiuru729vb1Wp1XV0dl8tlMBiRkZGPPPLIY489RqVS+6ZoAd+Pueem+lnuoZGRkaBXXxrFR0GvvjQyMhIdHb1kyRI/P79vv/32woULiYmJWVlZJSUlAoGgtrYWYG1ra+vu7rZarQ6Hw+12Dw4OjoyMjOJQ6tjYGHZAtdvtZrO5s7NTp9M1NjZWVlbGx8dHRkb+6U9/otPpRqNRKpVWYKqcqKqqqqqqij9FVTPL5wPv7almHvojoD8UWCPxXlMsnzaTybT95TVdoirddZY+ndXGZrWxWZ2cJCMnychhmTgsM4dl5bB6OCwbh2XjJPRyEhycBOcUF4fXl72cBBsnwcZh9XBYVg7LzGGZOCwjh2XkJHVykto5Se2cpDZ2Ukt6UreYv/3lNWazua6uzmg0xsTEPPTQQwAri8XKzs4GWKVSaVNTk1ar7ejoMJlMNpsNO6yClarZYjp+n1LRtf6hoSF0QDUajXq9XqlUikSivLy8c+fOLVmyhE6nazQaLCnUkGAi4UTVkxPOOJ8PvLenmmHoxGP/DFC4KN+ZeDWZTFvXrTHwebqUOF1KXGtKnD4lru0aozOVaUxldqcyTWlMcxqzJ41pm7j03s0FfVRPGtOcxjSlMbtTmcZUZmcqsz2V2Xbtqv7a1ZZrV1uuXTUKKrauW2M2m8EPolaraTQaGFmjo6PBYkBpaalQKKyrq2tubkaXAcCwil1UnS2m4/cjFd0+5TGgdnR0aLXahoYGHo+Xlpa2Z8+epUuXdnV1gdmJokT1iEQikUgkFovFYrEEU01NTU1NjeTu8/nAe3sqkMeEYa8Xi8Vg+tG/BKxaj+F2eqwmk+nttS8YeCWqeJo2nqaLp7XG0/SJtLZEmoEVY0yiGZNopiSaOYlmTaL1JNNsyTRbMrV3iostmWqf/KUtmdaTTLMm0cxJNFMSDTyhgRXTzoppY8XoE2JaEmJ0CTHqhBhjRenba19ApVZWVhqNxiVLlmzZsiUiIoLJZLLZ7Ly8PB6PJxaLGxsbNRoNGFbtdjsYVudiAeB+pYIBtb+/3+l0ghUpvV7f3NxcU1NTUFAQFxe3fPlyBoPR0NCA6gQusYZqa2tra2ulUmkd/pJKpVNNmFQqBVOO/hkAuFiy6Ch7R6wmk2nLqr+1lRQoYy+qYi+q6Bc19Is6+sVWxsU2xsU2xkUD85KReambecnMvGRmXrQyL9omLpf3H9yyNRhcLu8/6PMaK/OimXnRzLzUzbxkZF4yMC+1My+1My/pmZdaGJe0jEtqxiU1/VIz/VJ7aeGWVX/DSpVKpdHR0cuXLz969OiVK1eSkpIyMzOLior4fH5dXZ1SqUSHVafT2d/fDxYAcCR1dPK6lMViMRgMOp1OoVAIhcLs7Gwqlern59fT04OOQOiYh6Upk8nq6+vr6+sX9E0Zz+onN9UdZDIZ+CmAWqxXD6web3N4S33zb8v1BVz55XDF5XDF5fDmy+GqK+GaK+G6K+GtV8LbroS3R501RIUbo8K7o8LNUeHmqDBw2bI1GJ0vW7YGX9r7rcc15qgwc1R4d1S4MSrcEBXeHnW2PeqsPupsS9RZbdRZddRZ1ZWzTVfONl05q7hytq0wZ/PzK7BSq6qqLBaLn5/fwYMHIyMjmUxmenp6bm5ueXm5RCKRy+U6na6zs9NisWDXq2Z3UXUWpILNqHa73WQydXR0aDSahoaGyspKNpt96dIlPz8/t9vtPXYCnWCWo2/cESvwbnBjYyPwCshKpVIwxIrFYuzgil0SmErq6889rclKrz1zWHrmcN2Zww1nDjeGhyrCQ5XhIarwEE14iO5siD4iVB8R2hER2hkRaogIMUaEGCNCLnzxpQdN7L8vfPGlISKkMyK0IyIUPLwlIlR7NlR9NrT5bGjT2cPys4cbw47Iwo7UhR2Rhh3RZrPfWP4MVmplZaXL5fLz89u7d++ZM2doNFpKSkpmZmZxcbFQKKyvr1er1e3t7WABwOVygQUAPEp1Op02mw196ZfJZOXl5ampqZGRkUAqeA0F8xIMRWAeg1ne1NSkVCqbiZZSqWxqalJgdmBAh1h0cEWxYodVn1hNJtOmZ59QZaSKjh+UHD9Ye/xg3fGDspP760/uV5zcr/xhv+qH/apT+3Wn9utO7W87faD99IH20wc6Jy7nP9+DBQrasjX4/Od7Oifu3Hb6QMvpAy2nD6hPH1CfOtB86kDTDwcafjhQ/8MB2YnvpCe+qznxnfjEd+obaa/915M+pe7Zs+fEiROXL19OTExks9n5+flVVVVSqbS5ubm1tbWrq8tmszmdTnxJRbdPoQupBoOhtbUVvHdaUlKSnJx89uxZPz+//v5+7CCKHUGbmpqam5tVKlXmoUXI95lqr1QqlfeVarVaQA9EDmXd/iIrZNHEF1khi5DJbYjlq9XqzEOe1/u4k1qtVmcd2hBTpeLHBn6fqVKpVCp+bCBy+58qMDHgug0xVc3Nzc1VMRuQ7zKamuRyOfAK/g69sWLXsaaSGvi0vzI9SRCytzpkrzhkb03I3trDX9Ud/qrx8FeKI18pj3ylPPqV5uhXmqNftRz9Sn/sa/2xr9sxl/OffrZlazC6B/SWrcHnP/0M3ATu3Hrsa+2xr7XHvm4+9nXz0a+bjn4tP/K17MjX0iNf14Z+Iwn9RhT6jTD0m2Z28sZnHvMpdffu3UePHr1w4UJcXFxqampOTg6Px5NIJAqFoqWlxWAweCyqjo2N4UUqWJ0C76CCzagKhUIikRQWFrJYrDNnzvj5+Q0MDKCLemCOYsfR2xYF9EAEOZQ9aa8zcOVEgXTBzzcJGBux984OWQRuzg5Z9LM6tTpr4suskEW3LQvogR7fR8DYGEgXaLK9kPsAXQWcTtn6K6UNYEkArG9JJBLsMus0i6omk+mFP/xWGHb8+ovPpa97jrPuuRvrnuOuW5b38rLCl/+r5OWlZa8srVy/VLh+qWj9Usn6pdL1S2WvPou9nHnzjS1bg9G9obdsDT7z5hvorXWvPlvz6rPiV5+tfvXZqlefLV//bOkrzxa9siz/ledyXnou86XlGS8tZ7+0PH3d8urwEy/84bc+pe7atSs0NPTHH3+k0+kpKSnZ2dmlpaUikUgul2u1WrCo2tvbC/YBwKlUi8XS2dmp1WobGxvFYnFBQUFiYuLp06eBVDCUoqNpU1OT8sb3d4BxKBvjMTtkUWCgLyHYawPpgttkJ+RiBR/KBsA9Hk8X3Jaq0QgYIQzBz/gD6YyQRWBCNNkT0gX0QGQD+JtRq9VgyL3R3IxdDADLAKhUj2F1GqnP//Ov+acOX3vh6dSVT19f+TR75dOZK5/KWf1U/uoni1Y/XrLmcd7ax/lrHxeufVy09vGatY/Xrn1c+uIT4HL6jde2bA3unNyWrcGn33gN3KH2xSfELz5R/eITghefqHjxidK1TxSveaJgzVO5a57OWvU0Z9Uz6aueSVv1TOrKZwSnjzz/z7/2KXXnzp2HDh2KiIiIiYkBWwBKSkqqq6sbGho0Gg3epbrdbrAltb29HaxOVVdX5+XlxcfHnzp1CpXqOZreOLRoQ0yVKvPQotuvvYCVUKvVarVCxkYkhDvxP61Wyw1Fb8Pe4edu32Hy/35+GDf0Z+m3n0jI2Aj+KWRsDKQLtUKM4kA6F1x5+34ew71Wq50kVakEy6zoAisqtaamBmwKwC6tAqzea1TP//43gtOHU1cuTVu1NH31Us7qpZmrn8lZ80z+mqeK1jxZ8uKTvHVP8tc9Wb3uSdG6J2vWPVk7cTn999e3bA1uncjj36f//rr0padqX3pK/NJTopeeErz0VMVLT5Wue6p47VMFa5/OXbs0a83SjDXPstc8e331s2mrnhWeOfL873/jU+onn3zy/fffnz17lkqlJiYmZmRkFBUVCQQCj5UqdPs/vqSiK/7gvf76+nqhUJibm3v16tUffvgBKxUsm95+0c88tGhDDHidzg5ZhIRwtdzQRYEML6k/62FwmRuRQIZQp9PpqpkbkVCu7nbVE+imk4rC5obeHs1Dubrb3+xnlCFc9A4TE/Az4xCG15js3YHrDQ3Y9aqpFgDKy8vLysomSf3DP1afO566fkX6+hXs9SsyX12RvWFFzoYVBRtWFG9YUbZhBW/DCv7GFcKNK0SbltdsWl676Tlw2bI1GP0r2rI1+DTlTY9rpK8tr31thfi1FdWbAgSbAioCA8oDA0oCAwoDA3IDA7iBAVkbAjivBrBfDUh7NUAUeeL5P/zjVFK/++678PDw6OjohIQEDodTWFjI5/NlMplKpcKu/hNDqkAgyMnJiYuLO3nyJJAKXvebmpomLZ4K6BsnBiudTqfjhi4KxQ6TWo8xlSH8GShGavWEnsljaghXO/2YOvF3EBgSEughlcv1NWz7CBzCoFKpmicWANCNANiVKo/Nq9gxtaysDHg1mUwvPPRPoovh7DfXZry5NvPNtdlvrs15c03+m2uKKKtLtqwsf2tl5Vsr+W+tFG1dKdq6smbrytqJy+mtb6Hb+U9ve0u6bdXpbZ7X1G5bJd62SrxtleDtVVVvr+K9var0rVXFW9YUbF6bu3ktd/OLWZtfvLH5Rc7mF8WXzr7w0D/5lPrxxx8fPHgwLCwsOjo6Pj6ezWYXFBQQTyrYzU8mk00jFd0aBVakbi85HsrW6XSiuE0A31RS6UKtTscNXYSEcm9LvX1LCIOxMZDOZWxEQkJCFgXShcBgIF3oY0xFR1Qwamp9vvpPEXiuqe/4anS5T6ke71phx1Q0k8m0+o//IqH/lP3hm9nvvcZ977X8Ha8VfPBa8QevlXy4iffhpsoPN/E/3iT6ZKPok421OzfU7twg27mh3uvSsCuwYVdg/a7ABsylflegdFegdFegeOcm8c5Ngk9eq/rotYqPXiv96LWSD18v/PD1gg9ez3n/de77r3M/2lzDuLz6j/8yvdSoqChUalVVVV1dXXNzM9ivithSPdb3m5ubp12DnnDkazn19us9Ezvg/fz6zQ1dFEhnAIy+pWL+Drhc4eRHz6yJqQKbF8CGVaVSyfluEZA61VZVsD+Ax6s/VuobS/4iSoov3r+7YM97BXveK/kiqOSLIN4XQZVfvSvc+65o77uSve/W7nundt879d++U7//ncb978h9XRQHtssPbFdgLvID2xsObG/Yv1367Xbpt9trvgkSfxNU/U1Q1ddBFV++V/rle6Vfvlf4xfuFX7xfcuAzcXLCG0v+Mo3UM2fOEE/q4ODgVFKZTOaJEye8pYIjyDw2lIJNRLcXHCeZ8BjQvEZbL2vc0EVICBe7Cvbzuv/Elijw0NurR9hHY0fcSWHWqAQMdFsu+KsDSzWc7xatjyoFUtG9AjykYreneks9vnUz8/RJ2VVq1cmDvNAveN/v5n+/uzpktyh0d+3h3bWHP5Ud/rT+2KeNx4IVx4MVx3eqpr6oT+zyuDSd2NV04lP58U8bju+uP7JbemS39Mhn4sOfiUI/Exz6rOLQZxWHv+T/8F19PC3uzA/Ht272KfWjjz5CpV69ejU9PR1s/PeWOjg4SFSp6HIqmLs/b8MHGg9lY2BObDqdvJVq6u2pmO1MG28/Gn2AgB64IZaPbk9FH30bYJZaLaBvnHhuzHZXbJOvnbSVd1Lro0rRARV9WxVdSAUr/sCot1SwI/3rTz8WHfqdiJ2iy2HrMlN0mSn6zJS2zJS27JRObpIhJ8mQk9SVk9Sdk2S608Wcm+xxMeUmd+cmG3OTjbnJhpzkdu619qxrbVnXWsAllyPmXKMe/v71px9TKBT19fVklIqu+6NSf371P5Sl8Sw7ZBH2fSMPNBhkP9vZEJtFD8Q8CMvp+0zVnd6jiqkC4/yU98O8TzWxDRX7nqpcLmcfXLT+Sim6hDrNxlR0rb9sciKRSKvVXgjavHOZ/+tL/uP1Jf/xhv+f33zsL5sf96M8+fCWJx9+66lH3376r1ufWbJt6ZJ3lvq/s9T/XXB51v/dZyf+sdT/3aX+7yz13z75y3eW+m9bumTrM0vefvqvbz316JYnH6Y8+fDmx/3efOwvb/j/GXy7ncv8LwRt1ul0NTU1lZMji1TwRr/HShV2ZNV4nZxCrVarZq/MQ4sw1ibHjw1EpU6d9/v+TRN5vO/v/brvvSW1bIrq6upmch6eOa2+vh57OAaJpPb394M3/Se9R4XZCADC0pzJ3iHT7NSinO2afOW9bwrYEQe7tR+7L5X3xqnS0tKpyKKV++quDt7nTRwtcw+RTqrPPVTQWe4TxPS726HveE11093WONE0N3nksfMUeqwBOArAexcq9B1UlCna3WK9W6n345VcUr13S0W9oua8ZXjvzozuCYo2zU2z2DT7/KM7/KOHqaAbpLCrUN5rUaWTuyus9yb1frCSRar3Tv4yzJ7U3jvSex8fgh4K4tH0t04TeuhBjVfYO0wV+uYTOnyig6jH4SgeOn0ynQnW2fJ6b1hJIRXs83/HQ6bAlVgl2GPrRFOEPexuhlXfKex97nhgqgfNCq9X+alcThU+sZJFqngi9DgqVC1wib6MehzwiTUx1dkA7qp7OJB/qrAovQfO0tLSEq/QK2cL671JvQevZJHqMQSix6aCf6BXeh+OPNXZH7ybya/ee255z2+f69oeFj2GSRRiMSafX3rDXcCR9a6wkkWqx9H9nZ2d3d3dXb4yTmQwGDq9mt1zLrdPzvuaqWq7U3q93vtKn081Wz+L9+/qftLr9WSXWl1d3dHRERsbS4HhOCqV6oGVjFKNRiOFQpmtHwA2F1EolM7OTlJLFQqFUCr+I7tUsCIPpeI/8krFboaEUvEflAqlEiMoFUolRlAqlEqMgFTsuwNQKgyPYaUCrGSRit2e2tXVBaXiPPK++kOpxIq8UrE73UGp+I9CoRgMBtIdRwWlEi7yShVj6u7uhlJxHpCK3VuXLFKxH44DpeI/CoViNBqxe6CTQio4jgrNZDJBqTgPSMVuW3S73aSQij3UDkrFfxQKpaurC7vFhixSpZigVPwHpGLXg8kiFXvgvNlshlJxHoVC6e7uxq5dkEIqOIMaeiy/xWKBUnEehUIxmUzYZbb+/n5SSAUnRAFZrVYoFecBqdhlNrJIxZ7mCUrFfxQKBZz0D21gYODBlzo4OIg9NVpPTw+UivMoFIrFYkE/1baxsZEsUrGnjLTZbFAqzqNQKFarFXtORbJIxZ5V2m63Q6k4j0Kh9PT0YF8JBwcHH3ypQ0ND2I+ZgFLxH4VCsdls2FNyk0VqKyaHwwGl4jwKhWK327Ensx8aGnrwpQ4PD2PPxOR0OqFUnEehUBwOB3Z8IYtU7Lm+oFT8R6FQnE4n9vRvw8PDD77UkZERIyaXywWl4jwgFTu+kEVqNya32w2l4jwKheJyubDjy8jIyIMv9ebNmxaLxWKxgI876u/vh1JxHoVCcbvdYGQBn4NFFqk9PT3WiaBU/EehUPr7+9HPUrNYLDdv3nzwpY6OjtowDQwMQKk4j0KhDAwM9GAii1Q7psHBwQWROjY2pmxuVjWrenp65v+7EysgFTu+kEVq70QOh2OhpHZ1GXNzC4uLqkQi8a1bt+Z/AggUhUIZHBxEmdrtdlJIxcO+VC6X60Ymt7w8v7KSnZ1doNFo5nkCiBV2XyoQKfZQAWdQE0y0IGdQE4tFnIzyguwvqwv+XFxcwM0pHhwcmudpIFAUCqWjowP7KUJ9fX0PvlSXy4U9cnz+pZrNpoyM3IwMtlL4e4N2cQn79dyCmhAlEY8AABhBSURBVJqamvmcBmIFpGI/AYuMUg0Gw3xKHRsb4/F4OTmVede3jI8j4+NIA+9/lxbEc3PKrFbrvE0GsYJSF0CqVqvNzi7Ny0tpqf01kDo+hhSnrK7iK3m8Srhq5TMgFftpg1Dq3DY0NJidnVtVpShhbxwfR8YHkfFBZHwMaSz5R0kVo6Cw2tBpuK9voL3wPHK74LxZmmgcRKFQ2tvbsR+NSUap87mcKpPJCgurK8qpWvGvaVHL93/z8oH9644deUVX9zs+e5lQJC8rqxgdHb3Xp88Lfv6CFvxTe+H5B8gqkIr9cFfSSa2qqpq3MdVut+flFUvr6oR5q0bcyJdf7tq16+jOXd/v2LGfn/8Xg+R3grxDAlGTQtE0G99Ne+F5lC3hw0oFWMklFZzfcH6k3rp1SygUNik7qvmRbfLFw65fHjwQ9Omn3+za9fn7Oz4W5vuN23/DYz3V3WUqLql0udz3/Q3zgh/QMRVEIqnomTjnR6rBYCgtqxaJBc2V/zk+tmjU/av932x+Nyh467ag19/4uzj/P8ctD3UJf1uZvtNk6ReLxff57fKCkQdnRCWzVOw5Y+dB6ujoaH5+ocncV5Uf7DIsHu//P0M9v9371SsbN219Zf2mtWtfFOf823jnH4abf1OV+O+axjKBqO5+dgbIC36w1qeg1HmT2tTUVFlVJxZntQj/OO74p3HHn4asv/3i0//577+9/N9/W7l61f/U5Dw03vK7Qfk/Ggp/WZ4UaLMPVFUJ7u3X+uAxHZ+QWlxcDKXOoVSXy5WXX2wy95bf+Pu443fjlv873vPvQ6bf7drxzBNP/m1FwAvrX1nVmP/7cfXi/tpfDdYgdazForzIGqlKr9ff5bfSXnj+gXrRR0Ololih1NmPx6tUNBmqq5h6/r+MW/9tzPDv44Z/62/+/ZaND/3mf/3rn//y11UvLJNxfnWzBnFUIY4KxFGI5F161GSxl5ZVDA8P38V3ygtGJvXgoMVKBZFOamVl5ZxK7enpycsvVamaqzgvjRsXD2l+65b/YlCO9IqRV55HEARZ/Ot/+p+/PSFNWdRfjtgKEFsO4shB6qiLK9O/q6lvaVY2z9GEEStvqU6nk0RSwefFzJ3U0dHRgoIildpYlL6rR/wLtxRxSBC7EHGJkD4h8voqBEGQP/7pkS1/XyVPW+QuQmzZiC0L6clEbBlIwbl/rREUF5XwXC7XXEwbsaJQKG1tbSSVin6y0dxJbW1tzcktLyhgN2T8bkCK9IqRXiFi5yN9AmRAjLy/EUGQf/D7a8C7b7+sSF3kLkBsmUjPDcTKRnrYiDrml7nRbwhrNNXV1XMxbcQKSC0qKiKdVOxncM2R1KGhoWxuLl/QUJj8pqXiF70ixC5A7HzEXonYKxAHD2lIQLjhSPElREJHjOmILQuxZiAWNmJJQ0zXEFsqUnlucWH6j/nFVWazedYnj1ihUlGsZJTa2dk5F1Krq0WFJTW5mRebMhY7RIi96rZRWyliK0b6ihFpHHJxL3J81+K8CMSdg1jTEUsaYklFulOQ7iSkm4XoaL/Mivx/lQJ5eTlv1iePWGGlgkgntaKiYi6kOp3OG5l5+fkFxckvWct/Yecj9grEXo7YSxFbEdJbhLhLkYPvIgjyq3/99+U73/2bNhGxsxFLKmK6hnQn3b5YUxDBucVZcQfyigWtra2zO4XEiuxSwacaz4XUkpLSnHw+N/07VeZil+hXDsFiR9WvHBW/6OUtcpQg7lKkn4e8vQ5BkN+ueP7lD97f1sBY7OIi1ox/sLJ/ZUlfbElfbE3/VQ97cXviL7nhj5YUl+fmFw8NkffwFSC1sLCQdFKxn78961JNpu6MDG7Wjfiq9FduqR8dkj8xVP/4UN1jQ1L/wdq/DtU8OiR5ZLzOT5z459de+uvbb21knlndU/DwYOXjrtIn+kqfdJU/6Sp/wlX+hLv8ieHKxxqu/ikzZmd2TnlDQ+MsTiSxQqWiWKHUWaioqDi/gJd3/dvaJL8aln9Ngn/NVf+auL9OXB6VxD0iiXukLu4RPu2R4gt/EdD8xPRHRXR/Uay/KNZfRPcXT1wkdP/auEdKov+7KCczi5vf2+uYxekkUBQKRa/Xk1oqj8ebdanZ3ByxpLZRJpbLJHJZjUImbWqoUzbKWjTKTn2LpbvLbrX02iy9NqvDZnXYrb02a6/NarN0dxs7uw2deo1KpWhQNsqaGuoUMqm8rkYhk9bXyUpLefe/jxVBA1ILCgpQrOSSyuPx5kJqcXHx1avxVGoMlUqnUulUGp0Ww4ihM+iMOAYjgcFMYCYkJiSwEhJYCYlJiYlJCYlJ4Mu4hERmXAKTGc9gxsXSmTGxTFoMg0qj02h0Gi3m2rVrbW1tszidBAqVimIlkVTeRHOxRtUwN83uRBIorFSAlRRS+/r6eJg6OjrgGdRwnofUgoIC0kktLy+HUvEfkJqfn09SqeDUMVAq/kOloljJIhU9w1FZWRmUiv+A1Ly8vPyJyCUVnI0DSsV/qFQUK4mkomc4glLxH1YqwAqlwvAYhUJpbW0lo1SUaWlpKZSK/4DU3NxcFCu5pIIzHEGp+A+VimJ1OBxkkQqYlpSUtLe3Q6k4D0jNyclBsZJFKsoUSiVEFAqlpaUlJycHxUoWqdjzxkCp+A8rFWAlkVRwNo7i4mIoFf8BqVwuF8VKCqlOpxMc3wgOdIRS8R+FQtHpdFwuF8VKIqno3uNtbW1QKs4DUrOzs1GsZJGK7jpeWFgIpeI/IDUrKysrKwtgJZdUsE+uXq+HUnEehULRarWZmZlZWVlgZCWLVHQ3x/z8fCgV/wGpN27cQLGSQqrD4cDuPwal4j8PqVlZWWSRin1fDkrFf6hUFCtZpGLf7YBS8R+QmpGRgWLt7e198KX29vZyJ8rJyWltbYVScR6QyuFwUKxkkQqWdcBaZEtLC5SK8ygUikajAVIBVrJIzczMRJfNoVT8B6Sy2WwOhwO8kkUqeAUBUnU6HZSK8ygUilqtRqVyOByySMW+jkCp+A9ITU9PR7GSQqrdbkdfRG7cuKHVaqFUnIdKRbGSRSqbzQY/cEZGBpSK/4DU69evo1jtdjsppKI/MJvNhlLxH4VCUalUaWlpKFaySAU/M0ij0UCpOA9ITU1NBbOMRFJTU1NTU1PT0tLS0tLUajWUivOA1GvXroG5dv36dVJItdlsKSkp165dAz85kOqA4ThUKphl5JKKplKpoFScR6FQmpubseMLWaQmJSUlJSUlJycnJyc3NzdDqTgPlQqwkk4qi8VisVhKpRJKxXlAanJyMoqVRFJZLFZiYiKUSohQqShWm81GCqlgNE1MTExISIBS8R+Qii6wkUhqYmIiYBofH9/U1ASl4jwKhaJUKrFrF6SQ2tPTA5hCqUQJSGWxWChWskgFRsF/FQoFlIrzPKQmJSWRRWp8fHx8fPzVq1fj4uLgmIr/gFSwBkw6qVevXgVS4ZiK/ygUSlNTE1i7AFjJIhVlCqUSIqxUgJVEUgFTJpMJpeI/IDUhIYF0UlGmTCZTLpfjRGp8mWLrhaKVx7JIddl6oSi+TDH9bwZIBSvBACuJpAKmDAYDJ1LjSuRrrlSur3FuUN0k1WV9jXPNlcq4Evk0vxxUKoq1p6eHFFJRpviRuuV84fpa5+ctw30k6/OW4fW1zi3nC6f55WClAqykkGq1WlGpdDodJ1JXHsva0HxzodksTBuab648ljXNLwdIvXr1KoqVFFLBmAqY4k2qk5TNRKpCoQBbbMglFWVKp9MbGxuh1IVthlLj4uJQrKSQarVaUaaxsbG4krrQU7Ew3a3Uq1evkkUqWJeKjY3FldRXlSO9pOxV5cgMpaJYSSQVh2PqfEq9/iHy4fVpbq87EzD9HWazu5IKsJJFKvrqHxMTgyuptrmp9nQAMtEHaTZb2gcIpg/SvO7ko4DTtXM0dbYZSmUymShW0knF1Zi6XjncM4dJTgXsSMX8v6enpyd1B4L+W3IqIOCUZIoHp+6Y+rb7br1y+I5S5XI5eaXibTl1bqVKTu04JenpSd0RsGOH1+A5hwxn0AylMhgMFGsPeaTGToQjqU3D1jkrdcdtlDtSxacCAk6JrVbxqYAdqVarFXwtPjXtiz+CBJwSz9G0rW+6C6kAK1mkokxxtZy6rqG/ZY5ibkcQZDuzhbkd2c4sO/Kcp8LnjpR5PqTsyHPbmXM1PZNb19A/E6l0Oh1stGEymeSSGhMTQw6pZUee2759O1bqc0fKfrY48fXEXZke/5rzZi4VYGUymVarlSxSYybCj9QX693aOYvxDvIOA/y3JHSZ55i6LLREq9VqtSWhyzD/9HWPuejFevfMpdLpdCh1IQNSNXMWYxuyjaFhbEO2hYYuWxZarNFoikOXbWOA/4MrNIxtCIJsY2g0mFvnobuVymAwyCI1BhN5pN4eHJdNuPSUytiGLAstZmxDkGWhxXiWSqfTodQFa+WxrLX1LtWcFbsN2RarUqkKQ5ZtiwVXFYYs2xYSsgxBEGRbLHqH23f2EXrzbLe23nVHqY2NjaSWSqPRcCRV5lKSsrWyGUmNjY2FUqHUhWyGUmNiYkgqlUaj4Urqmro+BSlbU9c3Q6nosEoiqbSJcCW1kZTNXCqIRFJpmBoaGqDUhe1upcbGxpJOKpVKxY/U1VJnAylbLXXORCqNRoNSF17qlvOFq6vMQVKLjGQFSS2rq8x3PIoaKzUmJoYsUsFyKpVKxY/UuBL5yku8VXzzKqmDXBe+eeUl3h3PTAGkolhJJJU6EU6kOhwOenHj5siCBT/9zjxfNkcW0Isbp//NYKUCrGSRisNXf9g0eUil0WhQKgyPkVSqxWLB/syN+NieCpsmb6kWiwVKheEuKBVKJUYPrFSbzYZKraurg1KJ3t1KlUqlqFSbzYZ3qXq9Hkp9MLqj1CtXrnhL1ev1UCpsXoNSoVRi9IBLhcupD0z3s5yK6zUquO7/gPUArvsPDQ1NJTUuLu7kyZNQKhGbSurHH3+MSo2Pj2ez2QUFBT6lDg0NQamwOW96qWFhYcSW2t7erlar6+vrPaTi8+gU2DTdUWp0dDQqlc/ny2QylUrV3t5uMpmIJFUoFObm5l69evXUqVPeR/xJJJKwsDAKDMeFhYVJJBJvqZ988sn3339/9uzZ6OjohIQEDodTWFhIGKlut9tut5vN5vb2do1G09DQUF1dXVBQkJiYGBYWBj47BXsUdXZ2tkQi8Xl8z9wdjwGeXy6XKxSKpomUSmXzRHN0Doh5Dvws4FBp8DOCg1HlcrlcLp/hr7qxsVEikWRnZ2OlgnP9BQcHHzp0KCIigkqlJiYmZmRkFBUVCQSC+vp6tVqNSnW73XiU2t/f39vba7FYOjs7tVptY2OjWCwuKipKSUmJjIxcvnw5lUpNT0/HDqvTR51x0XcK3IdKpdJoNHA8EIPBACeuj4+PRz8SPDk5OTk5OSUlJSUl5dqsljK/JScnJyUlJSUlsVisxMTEhIQE8NnK6OeBgROEzeT3jJ0j6enpVCp1+fLln3322eHDhyMjI2NiYpKSkjIzM0tKSqqrqxsaGjQaTWdnp8Vi6e3t7e/vx69Uq9Xa2dmp0+kUCoVEIikpKbl+/frly5c/+eQTf39/hUKBHVZnS+odvaJSUazgfGAAK/hEUBTrXEhdEKzAK5AaHx8PsN6PVIVC4e/vv3Hjxq+//vr48eMXLlyg0+kpKSnZ2dmlpaUikUgul2u1WlxLHR4e7u/vdzqdVqvVYDC0trY2NTXV1tbyeLzMzEw6nf7tt9/6+fnRaDQejzf/UlGm6G8fnGoBYAWfCPqADaspEyMrOqz6xHpHr+js4PF4NBrNz8/vnXfeOXjw4OnTp3/66ae4uLjU1NScnBwejyeRSBQKRUtLi8FgsFqtTqezv79/eHgYL1Jv3bo1Ojo6MjIyMDDgdDptNltXV5der29ubpbJZFVVVbm5uSwW68cff/z8888feugh8KfJ4XBm3es9LAOAc4KCZQBvrLMrdf6xosOqB9a7XQZIT09XKBQ0Gu2hhx7avHnzt99+e/To0XPnzlGp1MTERDabnZ+fX1lZCd6gam1t7erqstlsTqdzYGBgZGRkbGzs1q1b+JKKrv53dHSgK1XFxcVsNptOp4eFhX3++ed+fn7+/v7R0dHgVPOWhQs93T32Qxrm6gN1cBD2x/Q44f/0v6jo6Gh/f38/P7/Nmzfv3bv36NGjZ86c+emnnxgMRkpKSmZmZnFxsVAolMlk2NUpl8uFU6mDg4Nut9vhcFgsFoPBABZVa2pqKioqcnNzU1NTqVRqWFjY7t27t2/f7gcjVBs2bNi6deu+ffuOHj0aERHx448/UqnUhISE9PT03Nzc8vJyiUQil8t1Oh1YSHU4HG63e3BwEF9SsVidTmdPTw+6AFBXV8fn8wsLCzMyMhISEqKiosLDww8fPrxv3749e/YEBwd//PHHH3zwwY4dO96f6L333nvvvffeh+GgHTt2fPTRRzt37tyzZ8++fftCQkJ++OGHyMjIqKgoJpMJBtSioiI+nw/endLr9V1dXT09PU6nEzAdHR0FQnAn1eVy9fb2ms3mjo4OrVYrl8vFYjGPx8vNzU1PT09MTKRSqefPnz99+vSxY8cOHTp08ODBffv2ffPNN3v37t27d+/XMNwE5si+ffsOHDgQEhJy/PjxsLCw8+fPR0VFMRiMpKQkDoeTl5fH4/HEYjFY6+/o6DCbzb29vWDfFHxJHZ9YAEC3VXkPq0KhsLS0NCcnJz09ncViMRiMqKioCxcuREREnDlz5ocffjhx4sTx48ePHTt2FIabjh07dvz48RMnTpw6dSo8PDwyMvKnn36iUqlMJjMpKYnNZufk5JSWloIlVI8BFd0+BaTOFtPx+5eKbqtC16vMZjO6YbW2tpbP5wOsHA4nJSUlPj6eTqdTqdTLly9fvHjx/PnzkZGR586dO3fuXERERERExDkYDoqMjDx//vzFixcvX75MpVLpdHp8fHxKSgqHwwFM+Xx+bW1tU1MTWEI1m83ouhS6fQpfUtEFAOyw2t3d3dbWptFo5HJ5TU0NwJqXl5eZmXn9+vXk5OSEhAQmkxkbG0uj0aKjo6OioqKioq5cuXLlypUoGA6Kjo4G256ZTGZCQkJycvL169czMzPz8vIA05qaGrlcrtFowP5T2AF1Ll76x2dLKnZYdTgcVqvVaDTq9Xq1Wi2Xy2tra4VCYXl5eVFRUW5u7o0bN9hsdmpqanJyMovFSkhIQDf4xcNwEJgjLBYrOTk5NTWVzWbfuHEjNze3qKiovLxcKBTW1tbK5XK1Wq3X641Go9VqdTgc2AEVp1LHxsaww2pfXx/YDQDFqlAo6urqxGIxn88HXvPy8rhcblZW1o0bNzgcDpvNTofhJjabzeFwbty4kZWVxeVy8/LygFE+ny8Wi+vq6rBMLRZLb29vX18fdkAFL/04kjruNayCbatOp9NutwOsbW1tWq1WqVQ2NjZKpVKxWCwQCCorK8vLy0tLS0tKSoqKigoLCwtguKmwsLCoqKikpKS0tLS8vLyyslIgEIjFYqlU2tjYqFQqtVptW1sbYGq3251OJ9iGOncD6vhsSQXDqk+sXV1dHR0der1eo9EolUq5XC6TyaRSqUQiEYlE1dXVAoGAz+dXwXATn88XCATV1dUikUgikUilUplMJpfLlUqlRqPR6/UdHR1dXV1TMZ2LAXX8/qWOT40VLAZYrVaTyWQwGNrb21tbW7VarUqlAmQbGxvr6+tlMlldXV1dXZ1UKpVKpXUwHCSTyerr68EevUqlUqVSabXa1tbW9vZ2g8FgMpmsVit40Z8fpuOzKNUbK1hmdTgcNpsNeDUajZ2dnYBsS0uLVqvVaDRqtRq7F/AC7oYMQ1Or1RqNRqvVtrS0AKCdnZ1GoxEYtdlsDocDLJv6ZIpTqeNTYB0aGhoYGACDq8PhsNvtYJcIlGxHR0dHR0fbRHq9Xq/Xt8HwEZg7KFCwZ4/dbgdG3W73wMDA0NDQ/DAdny2p476wjoyMgMEV67W3txfs3QP21jGbzSaTqRuGs0wmk9lsBvMI7GjW29uLNQqG0pGRkflhOj6LUse9sHp77e/vd7lcLpfL6XQ6nc7e3t7e3l47DJeBuQPmFJhr/f393kbnh+n47Eodx2D16XVoaAiQBWpBbrfbBcNZbrcbnUFgfg0ODoLX+qmMzinT8VmXCro1OXR5AJAFAbgwnAdogsAc9AY610ZBcyIV5IEVNDrRTRhBQmcZOhPn2ShoDqV65D3QwojYrbtvVvzMn1Tv7uFnhi14C6Xl/wMCZ0lbuy9cIQAAAABJRU5ErkJggg==" alt="" />
3_for循环的拓展应用的更多相关文章
- hdu 4333"Revolving Digits"(KMP求字符串最小循环节+拓展KMP)
传送门 题意: 此题意很好理解,便不在此赘述: 题解: 解题思路:KMP求字符串最小循环节+拓展KMP ①首先,根据KMP求字符串最小循环节的算法求出字符串s的最小循环节的长度,记为 k: ②根据拓展 ...
- 【Python】循环的拓展
- python控制语句---循环结构语句
这次主要把循环结构的控制语句补上,主要包含while.for.continue.break.循环嵌套.主要写一些基本的认识以及包含的一些实例.当只有唯一路径且只跑一次的时候选择上一节中的选择结构语句就 ...
- yzoi2226最小步数的详细解法
Description - 问题描述 在各种棋中,棋子的走法总是一定的,如中国象棋中马走“日”.有一位小学生就想如果马能有两种走法将增加其趣味性,因此,他规定马既能按“日”走,也能如象一样走“田”字. ...
- Generator和Async
引言 接触过Ajax请求的会遇到过异步调用的问题,为了保证调用顺序的正确性,一般我们会在回调函数中调用,也有用到一些新的解决方案如Promise相关的技术. 在异步编程中,还有一种常用的解决方案,它就 ...
- ACM-自学之旅
分类 知识清单 数据结构 链式前向星 树状数组 线段树 线段树的区间合并 基于ST表格的RMQ 图论 最近公共祖先 树的直径.树的重心与树的点分治 树的最小支配集,最小点覆盖与最大独立集 求无向连通图 ...
- 深入理解ES6之迭代器与生成器
迭代器 迭代器 iterator,在 Javascript 中,迭代器是一个对象(也可称作为迭代器对象),它提供了一个 next() 方法,用来返回迭代序列中的下一项. next 方法的定义,next ...
- C 碎片四 流程控制
前面介绍了程序中用到的一些基本要素(常量,变量,运算符,表达式),他们是构成程序的基本成分,下面将介绍C语言中流程控制的三种结构:顺序结构.分支结构.循环结构 一.顺序结构 顺序结构的程序设计是最简单 ...
- java中Random(long seed)方法与rRandom()方法的使用产生随机数
Random 类作为JAVA中用于产生的随机数 ,new Random(10) :10是种子数. 注意:Random 的一个特点是:相同种子数的Random对象,对应相同次数生成的随机数字是完全相 ...
随机推荐
- robot framework 安装配置
robot framework 是一款专门用作自动化测试的框架,提供了丰富的内置库,与第三方库,也支持用户自己编写的库,robot framework +library 可以 用来做ui的自动化测试, ...
- asp.net GDI+ 绘制椭圆 ,弧线,扇形
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...
- 顶点着色器详解 (Vertex Shaders)
学习了顶点处理,你就知道固定功能流水线怎么将顶点从模型空间坐标系统转化到屏幕空间坐标系统.虽然固定功能流水线也可以通过设置渲染状态和参数来改变最终输出的结果,但是它的整体功能还是受限.当我们想实现一个 ...
- 关于$.fn.*的使用
这个案例是我封装了一个树形插件,也是别人写好的,但是对于我来说调用起来不是很方便,就对他的初始化方法又进行了一次封装,总的来说显得比较麻烦,不过我是新手嘛 DEMO 封装一个jcTree的方法$.fn ...
- Win32 RGB三原色
以前看到三原色的图案,一直很好奇是如何画出来.后来终于搞清楚了,其实很简单,实际上就是RGB三个分量的"位与"运算. 下面给出Win32绘制三原色图案的例子,特此记录在此: #in ...
- modelsim仿真xilinx mig ip core相关问题
1.运用自动化脚本文件 do sim.do 其中不支持 .f文件 , 需要直接vlog 2.对于mig模型采用下面句型(根据example中do sim.do文件) vlog -sv +define ...
- php 随记
1. 删除数组里面为空的元素 $arr = [ '1', '0', '', '[]', 'false', 'true', ' ' ]; //以以上的数组为例 $codes = array_filter ...
- git入门操作命令(转载)
以下为git环境搭建: 先建用户-->建组-->用户添加到组 新建项目,命名空间选择组 项目建完后,会分配远端地址. 然后本地配置好远端地址后,提交代码. 设置用户,邮箱 git ...
- MVC将服务器端的物理路径转换为服务器路径
以图片为例 后台Controller.cs public FileResult ImageUrl(string file) { return File("物理路径"+file, & ...
- Microsoft Visual Stduio 2005 Ent安装报错解决方法
错误:Microsoft Visual Studio 2015 Devenv : 安装时发生严重错误 安装过程第一次出现该错误时,查看了日志文件,错误提示如下: [0EEC:0EF0][2016-10 ...