SQL函数
1,字符串截取拼接
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****');
SUBSTRING_INDEX(c.context,'}',1);
SUBSTRING_INDEX(a.task_context,':',-1) as context;
c.mobile LIKE CONCAT('%', '${mobile}', '%')
2,Case函数
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code
3,字符串拼接
CONCAT_WS('/',b.value1,b.value2,b.value3);
CONCAT(a.value1,'mmol/L') AS value1
4,日期加减
DATEDIFF(DATE(MAX(take_time)),DATE(MIN(take_time))) as days
5,年龄计算
YEAR (NOW()) - YEAR (b.birthday) AS birthday
6,IF函数
IF(b.gender=0,'女','男') AS gender
7,COUNT函数
count(DISTINCT(a.called_user_id) & a.begin_calltime>0)
SELECT
a.user_id,
a.realname,
(SELECT COUNT(*) from ut_pic b where b.user_id=a.user_id) as picTotal,
(SELECT COUNT(*) from ut_pic c where c.user_id=a.user_id and is_show=1) as pic,
(SELECT COUNT(*) from ut_video d where d.user_id=a.user_id) as videoTotal,
(SELECT COUNT(*) from ut_video e where e.user_id=a.user_id and is_show=1) as video
FROM
ut_user a
with ta as
(
select nvl(v.update_time,v.create_time) sj,v.housekeeper_id hid from t_crd_video v
union all
select nvl(a.update_time,a.create_time) sj,a.housekeeper_id hid from t_crd_album a
)
select
h.id ID,h.real_name realName,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id and t.is_show=1) picShow,
(select count(1) from t_crd_album t where t.vaild=1 and t.housekeeper_id=h.id) picTotal,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id and v.is_show=1 ) vidShow,
(select count(1) from t_crd_video v where v.vaild=1 and v.housekeeper_id=h.id ) vidTotal,
to_char((select max(sj) from ta where ta.hid=h.id),'yyyy-mm-dd ') updateTime
from t_crd_housekeeper h
where h.vaild=1
8,外联
SELECT
f.id,
f.store_name,
f.vendor_name,
f.area_name,
f.store_phone,
h.realname,
h.mobile,
f.created_time
FROM
(
SELECT
a.id,
a.store_name,
c.vendor_name,
b.area_name,
a.store_phone,
a.created_time
FROM
pd_store a,
pd_vendor_area b,
pd_vendor c
WHERE
a.vendor_area_id = b.id
AND a.vendor_id = c.id
AND a.vendor_id = 1
AND b.area_type = 1
AND b.area_name LIKE '%%'
LIMIT 0,5
) f
LEFT OUTER JOIN pd_clerk g ON f.id = g.store_id
AND g.user_role = 2
LEFT OUTER JOIN pd_user h ON g.user_id = h.uid
9, 外联
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
LEFT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id
UNION
SELECT
k.operater_id,
k.realname,
k.mobile,
k.pdNum,
l.operater_id,
l.realname,
l.mobile,
l.dslNum
FROM
(
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS pdNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id LIKE '202%'
GROUP BY
a.operater_id
) k
RIGHT OUTER JOIN (
SELECT
a.operater_id,
b.realname,
b.mobile,
COUNT(DISTINCT a.user_id) AS dslNum
FROM
pd_indicator_values a,
pd_user b,
pd_user_vendor c
WHERE
a.operater_id = b.uid
AND a.vendor_id = 12
AND a.type_code <> 'hr'
AND a.user_id = c.user_id
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
AND c.vendor_id = 12
AND c.vendor_member_id NOT LIKE '202%'
GROUP BY
a.operater_id
) l ON k.operater_id = l.operater_id;

N,其他
SELECT
b.store_name,
a.take_time,
c.realname,
CONCAT(LEFT(c.id_card,LENGTH(c.id_card)-4),'****'),
c.mobile,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
a.value1,
a.value2,
a.value3,
d.realname as clerkname,
d.mobile as clerkmobile
FROM
pd_indicator_values a,
pd_store b,
pd_user c,
pd_user d
WHERE
a.store_id = b.id
AND a.user_id = c.uid
AND a.operater_id = d.uid
AND a.store_id = 164
AND a.take_time >= '2016-09-01 00:00:00'
AND a.take_time < '2016-11-01 00:00:00';
SELECT
a.realname,
a.gender,
c.realname as clerkname,
c.mobile,
d.store_name,
b.type_code,
b.take_time,
CONCAT_WS('/',b.value1,b.value2,b.value3)
FROM
pd_user a,
pd_indicator_values b,
pd_user c,
pd_store d
WHERE
a.uid = b.user_id
AND b.operater_id = c.uid
AND b.store_id = d.id ORDER BY b.user_id ASC;
SELECT
COUNT(*)
FROM
(
SELECT
user_id,
COUNT(user_id) AS coun,
DATEDIFF(
DATE(MAX(take_time)),
DATE(MIN(take_time))
) AS days
FROM
pd_indicator_values
WHERE
take_time >= '2015-11-01 00:00:00'
AND take_time <= '2016-11-24 23:59:59'
AND vendor_id = 1
GROUP BY
user_id
HAVING
coun > 1
AND days > 1
) k;
SELECT
h.vendor_name,
h.take_time,
h.realname,
h.created_time,
h.gender,
h.birthday,
h.address,
h.mobile,
h.id_card,
h.type_code,
h.value1_status,
h.value1,
h.value2_status,
h.value2,
h.value3_status,
h.value3,
h.clerkname,
h.clerkmobile,
h.store_name,
j.realname as stoname,
j.mobile as stomobile
FROM
(
SELECT
e.vendor_name,
a.take_time,
f.created_time,
b.realname,
(
CASE b.gender
WHEN '' THEN
'女'
WHEN '' THEN
'男'
ELSE
' '
END
) AS gender,
YEAR (NOW()) - YEAR (b.birthday) AS birthday,
g.address,
b.mobile,
b.id_card,
(
CASE a.type_code
WHEN 'bp' THEN
'血压'
WHEN 'hr' THEN
'心率'
WHEN 'fbg' THEN
'空腹血糖'
WHEN '2hpbg' THEN
'餐后两小时血糖'
WHEN 'tc' THEN
'总胆固醇'
WHEN 'bua' THEN
'血尿酸'
WHEN 'bmi' THEN
'体质指数'
ELSE
'其他'
END
) AS type_code,
(
CASE a.value1_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value1_status,
a.value1,
(
CASE a.value2_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value2_status,
a.value2,
(
CASE a.value3_status
WHEN '' THEN
'正常'
WHEN '' THEN
'风险'
WHEN '' THEN
'危险'
WHEN '' THEN
'偏小风险'
WHEN '' THEN
'偏小危险'
ELSE
'其他'
END
) AS value3_status,
a.value3,
c.realname AS clerkname,
c.mobile AS clerkmobile,
d.store_name,
d.id,
q.cou
FROM
(
SELECT
o.user_id,
COUNT(o.user_id) AS cou
FROM
pd_indicator_values o
WHERE
o.take_time >= '2015-06-01 00:00:00'
AND o.take_time <= '2016-11-22 23:59:59'
GROUP BY
o.user_id
HAVING
cou > 2
) q,
pd_indicator_values a,
pd_user b,
pd_user c,
pd_store d,
pd_vendor e,
pd_user_vendor f,
pd_user_info g
WHERE
q.user_id = a.user_id
AND a.user_id = b.uid
AND a.operater_id = c.uid
AND a.store_id = d.id
AND a.vendor_id = e.id
AND a.user_id = f.user_id
AND a.user_id = g.user_id
AND a.take_time >= '2015-06-01 00:00:00'
AND a.take_time <= '2016-11-22 23:59:59'
) h,
pd_clerk i,
pd_user j
WHERE
h.id = i.store_id
AND i.user_role = 2
AND i.user_id = j.uid ORDER BY h.cou DESC;
1,将查询结果存入表
insert into pd_temp select * from pd_other;
2,将表数据导出xls文件最大1048576记录数
select * from pd_temp limit 1048576,364387 into outfile 'c:\\20.xls';
3,格式转换
记事本另存为ASCII格式
或
iconv -futf8 -tgb2312 -otest 21.xls 20.xls
SELECT
a.take_time AS take_time,
b.realname AS realname,
IF(b.gender=0,'女','男') AS gender,
b.mobile AS mobile,
b.id_card AS id_card,
IF(a.type_code='fbg', '空腹血糖', '餐后两小时血糖') AS type_code,
CONCAT(a.value1,'mmol/L') AS value1,
d.realname as clerkname,
d.mobile as clerkmobile,
c.store_name AS store_name
FROM
pd_indicator_values a,
pd_user b,
pd_store c,
pd_user d
WHERE
a.user_id = b.uid
AND a.operater_id = d.uid
AND a.store_id = c.id
AND a.vendor_id = 1
AND a.province_code = 520000
AND a.city_code = 520100
AND a.take_time >= '2016-08-01 00:00:00'
AND a.take_time < '2016-09-01 00:00:00'
AND (
a.type_code = 'fbg'
OR a.type_code = '2hpbg'
)
AND (
a.value1_status = 3
OR a.value1_status = 5
);
SELECT
d.id,
d.store_name,
c.realname,
c.mobile,
count(a.caller_user_id),
count(
DISTINCT (a.called_user_id) & a.begin_calltime > 0
),
count(a.begin_calltime > 0),
SUM(a.caller_duration)
FROM
pd_call_records a,
pd_clerk b,
pd_user c,
pd_store d
WHERE
a.caller_user_id = b.user_id
AND b.user_id = c.uid
AND b.store_id = d.id
AND a.created_time >= '2016-08-01 18:48:45'
GROUP BY
a.caller_user_id;
SELECT
c.realname,
c.mobile,
SUBSTRING_INDEX(c.context, '}', 1),
c.callednum,
c.callnum,
c.calltime,
d.realname,
f.store_name,
d.mobile
FROM
(
SELECT
b.realname AS realname,
b.mobile AS mobile,
SUBSTRING_INDEX(a.task_context, ':' ,- 1) AS context, IF (a.caller_duration > 0, 1, 0) AS callednum, IF (a.called_duration > 0, 1, 0) AS callnum,
IFNULL(a.called_duration, 0) AS calltime,
a.caller_user_id AS clerkid
FROM
pd_call_records a,
pd_user b
WHERE
a.called_user_id = b.uid
AND task_id > 0
) c,
pd_user d,
pd_clerk e,
pd_store f
WHERE
c.clerkid = d.uid
AND d.uid = e.user_id
AND e.store_id = f.id;
SELECT COUNT(k.user_id) from (
SELECT
a.user_id,
DATEDIFF(DATE(MAX(a.take_time)),DATE(MIN(a.take_time))) as days
FROM
pd_indicator_values a
WHERE
a.vendor_id = 12
AND a.take_time >= '2016-10-26 00:00:00'
AND a.take_time <= '2016-11-30 23:59:59'
GROUP BY a.user_id )k where k.days>1
邮箱联想匹配:
SELECT
a.ID,
b.USER_ID,
a.PERSON_ID,
a.TYPE,
a.MAIL,
a.CREATE_TIME,
a.UPDATE_TIME,
a.DELETE_TAG,
a.MAIN_USER_ID,
b.`NAME`,
b.AVATAR,
b.LEVEL1_GROUP_ID,
b.LEVEL2_GROUP_ID,
b.LEVEL3_GROUP_ID
FROM
t_contacts_person_mail a, t_contacts_person b
WHERE
a.PERSON_ID = b.ID
AND a.DELETE_TAG = 0 AND b.DELETE_TAG = 0 AND locate('@',a.MAIL)>0
-- 子账号
AND (b.USER_ID ='9e5687aa76b74daaae47bdbf9f453e97' OR (b.USER_ID='83fcb7323c9a47de98403be7cedb9433' AND b.IS_OPEN = 1))
-- 主账号
-- AND b.USER_ID in ('83fcb7323c9a47de98403be7cedb9433', '9e5687aa76b74daaae47bdbf9f453e97')
AND substring_index(a.MAIL, '@', 1) LIKE CONCAT('%', 'a', '%')
GROUP BY a.MAIL
ORDER BY (length(substring_index(a.MAIL, '@', 1)) - length('a')) ASC, b.IS_OPEN ASC, b.CREATE_TIME DESC
LIMIT 0,10
SQL函数的更多相关文章
- Oracle 中的sql函数以及分页
SELECT LPAD(,'*.') "LPAD example" FROM DUAL; 1.分页查询 (1)方法一:使用 between and 来实现分页 select * ...
- SQL函数说明大全
一旦成功地从表中检索出数据,就需要进一步操纵这些数据,以获得有用或有意义的结果.这些要求包括:执行计算与数学运算.转换数据.解析数值.组合值和聚合一个范围内的值等. 下表给出了T-SQL函数的类别和描 ...
- oracle(sql)基础篇系列(一)——基础select语句、常用sql函数、组函数、分组函数
花点时间整理下sql基础,温故而知新.文章的demo来自oracle自带的dept,emp,salgrade三张表.解锁scott用户,使用scott用户登录就可以看到自带的表. #使用ora ...
- [转]字符型IP地址转换成数字IP的SQL函数
使用SQL函数可以实现许多的功能,下面为您介绍的是字符型IP地址转换成数字IP的SQL函数示例,供您参考,希望对您学习SQL函数能够有所帮助. /**//*--调用示例 sele ...
- 常用的Sql 函数
常用的Sql 函数 1: replace 函数,替换字符. 语法 replace (original-string, search-string, replace-string ) 第一个参数你的字符 ...
- 常用的 SQL 函数
SQL 函数 聚合函数(针对数字列): AVG:求平均分 COINT: 计算个数 MAX: 求最大值 MIN: 求最小值 SUM: 求和 数学函数(): ABS: 绝对值 CEIL ...
- Oracle数据库--SQL函数
Oracle SQL函数 1.ASCII返回与指定的字符对应的十进制数;SQL> select ascii('A') A,ascii('a') a,ascii('0') zero,ascii( ...
- 常用的sql函数
常用的sql函数 concat('hello','world') 结果:helloworld 作用:拼接 substr('helloworld',1,5) hello ...
- ThinkPHP使用SQL函数进行查询
//SQL函数查询 $products=$pro->where(array("FIND_IN_SET('".$type."',type)",'num'=& ...
- oracle PL/SQL(procedure language/SQL)程序设计(续集)之PL/SQL函数
PL/SQL函数 examples:“ 构造一个邮件地址 v_mailing_address := v_name||CHR(10)|| ...
随机推荐
- margin属性
可以设置position:absolute/relative/fixed,通过调节top/bottom/left/right实现元素的定位,这样很好,但是有时候想通过margin来实现. 下面是mar ...
- nginx----------------环境搭建遇到的一些问题汇总--(多域名配置,配置文件修改问题)
nginx的启动命令是:(通用) /usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx.conf 重启命令: /usr/local/ng ...
- HDU5870 Alice's Adventure in Wonderland
大概做法是这样的 考虑最朴素的做法,预处理出1到所有点的最短路数组dis1和方案数数组cnt1,和预处理出n到所有点的最短路数组dis2和方案数数组出cnt2,然后暴力枚举点对(A,B),如果A和B之 ...
- objective-c第七章课后练习3
题:Fraction类对负分数适用吗?例如:1/4-1/2 能否显示成-1/4? //--------类定义实现参考上篇随笔,此处需更改print方法和main主方法部分---------- - (v ...
- javaSE第三篇
1.classpath: set classpath = 类路径 用来找class文件 set classpath = .;(默认表示当前路径 2.数组的拷贝 方法一:Arrays.copyOf( ...
- .net动态类型在处理json数据方面的应用
我们在.net中处理json数据时,经常需要定义相应的类.比如json数据:{ "name" : "hello", "age" : 18 } ...
- html与css面试结合工作的总结难点
面试的时候一般会常常问起的,同时也是工作的时候会常常问道的几个问题,一下之列表内容,详细的后会附有文章,希望能帮到大家,同时有不足希望大家多多补充交流. 1.主要是的是浮动的问题(常见的问题有,三列布 ...
- Adressing
- oracle的IMU和ora-01555
IMU: 01555: 按照上图找啊找,已经提交事物的undo块找不到了,就产生01555错误,解决这样问题:1. 确保undo表空间数据的保留时间至少大于最长sql语句的时间 2. 增大undo表空 ...
- 用ajax提交数据到后台以便下载,但是不能下载
在js里面,把一段数据通过post提交给后台,经过后台解析处理,把他以输出流写给浏览器.会发现没得下载提示. 个人觉得是ajax不能解析返回的response里面的流. 如果数据比较大,像post过去 ...