Lambda演算 - 简述Y组合子的作用
Y组合子:\f.(\x.f(xx))(\x.f(xx)),接受一个函数,返回一个高阶函数
Y组合子用于生成匿名递归函数。
什么叫匿名递归函数,考虑以下C语言递归函数
int sum(int n)
{
return n == 0 ? 0 : n + sum(n-1);
}
这个函数在内部递归调用了自身,调用自身需要函数本体的名字,这个函数叫sum,sum内部用名字sum,递归调用了自己
在lambda演算中,可以写成类似的表达式sum = \x. x == 0 ? 0 : sum x
但是对于一个lambda表达式,他本身是匿名的,lambda在定义的过程中引用了自身,就算是C++,这样的lambda表达式也是不成立的
auto sum = [](int n) {
return n == 0 ? 0 : n + sum(n-1);
};
lambda表达式本身是不具名的,我们需要绕开这个限制。
一种可能的解决办法是使用高阶函数,用另一个函数把上面的sum包装一下:它接受一个函数f,并返回一个函数,这个函数接受x,判断递归终点,或调用f继续递归:
G = \f. \x. x == 0 ? 0 : f (x-1)
写成C++是这样的
auto G = [](function<int(int)> f) {
return [&](int x) {
return x == 0 ? : 0 : x + f(x-1);
};
};
现在我们发现,当有一个函数f使得G(f) = [](int x){return x == 0 ? 0 : x + f(x-1);} = f的时候,这个f正好是我们需要的匿名递归函数sum
G(f) = f,眼熟吗,还记得不动点这个概念吗,我们需要的匿名递归函数sum就是函数G的不动点
求解这个不动点sum,我们即可获得一个匿名递归函数,如何求解见附
最后的结果:sum = YG,Y和G前面已知,这样,sum是一个签名为int(int)的函数,是一个匿名递归函数
Y组合子也称不动点组合子,用这个方法可以求解一切匿名递归函数。
附:sum = YG使得G(sum) = sum的证明:
证明:对于任意G,G(YG) = YG
令W = \x. G(xx), X = WW //这个令真的太TM绝了,反正我是没想到
有X = WW = (\x. G(xx))W = G(WW) = G(X)
又因为YG = (\x. G(xx))(\x. G(xx)) = WW = X
所以G(X) = X就是G(YG) = YG
证毕
Lambda演算 - 简述Y组合子的作用的更多相关文章
- Y组合子
Y组合子 Y组合子的用处 作者:王霄池链接:https://www.zhihu.com/question/21099081/answer/18830200来源:知乎著作权归作者所有.商业转载请联系作者 ...
- 大到可以小说的Y组合子(二)
问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...
- Racket中使用Y组合子
关于Y组合子,网上已经介绍很多了,其作用主要是解决匿名lambda的递归调用自己. 首先我们来看直观的递归lambda定义, 假设要定义阶乘的lambda表达,C#中需要这么定义 Func<in ...
- 大到可以小说的Y组合子(一)
问:上回乱扯淡了一通,这回该讲正题了吧. 答:OK. 先来列举一些我参考过,并从中受到启发的文章. (1.)老赵的一篇文章:使用Lambda表达式编写递归函数 (2.)装配脑袋的两篇文章:VS2008 ...
- 大到可以小说的Y组合子(三)
答:关于Fix的问题你fix了吗? 问:慢着,让我想想,上次留下个什么问题来着?是说我们有了一个求不动点的函数Fix,但Fix却是显式递归的,是吧? 答:有劳你还记的这个问题. 问:Fix的参与背离了 ...
- 大到可以小说的Y组合子(零)
问:啊!我想要一个匿名的递归… 答:Y(音同Why)… … … 问:作为一位命令式语言的使用者,为什么会突然折腾起Y组合子呢? 答:的确,这事儿要从很久以前的几次搁浅开始说起…上学的时候,从来没有接触 ...
- 简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子
递归.哦,递归. 递归在计算机科学中的重要性不言而喻. 递归就像女人,即令人烦恼,又无法抛弃. 先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$. \[ {double} ...
- Haskell语言学习笔记(79)lambda演算
lambda演算 根据维基百科,lambda演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义.函数如何被应用以 ...
- [学习] 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑
函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...
随机推荐
- 解决php deprecated 的问题
Deprecated :意思是“不推荐” php 5.3 从一方面来讲,可以说在07年计划PHP6的中的一个pre版本,增加了很多功能,统一了很多语法,使PHP变得更加强大与简洁. 说到统计架构规划, ...
- SQLServer数据库转换成MySQL数据库
由于工作需要,系统原先的SQLServer数据库要转换成MYSQL数据库,所以这两天就一直在查阅这方面的资料.最开始,我尝试从SQLServer中导出SQL文件,然后导入到MYSQL数据库中,发现报错 ...
- Oracle优化总结
本文主要从大型数据库ORACLE环境四个不同级别的调整分析入手,分析ORACLE的系统结构和工作机理,从九个不同方面较全面地总结了ORACLE数据库的优化调整方案.关键词 ORACLE数据库 环境调整 ...
- android沉浸式状态栏设置(4.4以上版本)
其实设置比较简单,我用了小米和htc的几款机型都可以用. 主要代码就是这个(注意要在Activity的setContentView之前调用才行) /** * 开启沉浸式状态栏 * */ public ...
- bash 取文件特定行
比如,想要取某文件10-20行 可以用sed sed -n '10,20p' XXX.txt 非常方便!
- 使用java连接sqlserver2008 R2/sqlserver2008
package com.product.jdbc.dbutil; import java.sql.Connection;import java.sql.DriverManager;import jav ...
- 彩票号码OC呈现
+(NSArray*)splitCode:(NSString*)code backzoneIndex:(NSInteger*)outIndex { /* 01 0102|0304 0102030405 ...
- JavaScript变量作用域
全部变量拥有全局作用域,局部变量拥有局部作用域(这里注意函数的参数也是局部变量) 1.在函数体内,局部变量的优先级高于同名的全局变量. 我的理解就是当你同时定义了同名的局部变量和全局变量时,函数体内返 ...
- Linux防火墙简介及iptables的基本使用
一.防火墙基础知识 iptables/netfilter:网络防火墙,连接追踪(状态检测) netfilter:工作内核中,让规则能够生效的网络框架(framework) iptables:防火墙规则 ...
- Oracle启动脚本,开机自启动设置
#!/bin/sh # chkconfig: # description: Oracle auto start-stop script. # # Set ORA_HOME to be equivale ...