Lambda演算 - 简述Y组合子的作用
Y组合子:\f.(\x.f(xx))(\x.f(xx)),接受一个函数,返回一个高阶函数
Y组合子用于生成匿名递归函数。
什么叫匿名递归函数,考虑以下C语言递归函数
int sum(int n)
{
return n == 0 ? 0 : n + sum(n-1);
}
这个函数在内部递归调用了自身,调用自身需要函数本体的名字,这个函数叫sum,sum内部用名字sum,递归调用了自己
在lambda演算中,可以写成类似的表达式sum = \x. x == 0 ? 0 : sum x
但是对于一个lambda表达式,他本身是匿名的,lambda在定义的过程中引用了自身,就算是C++,这样的lambda表达式也是不成立的
auto sum = [](int n) {
return n == 0 ? 0 : n + sum(n-1);
};
lambda表达式本身是不具名的,我们需要绕开这个限制。
一种可能的解决办法是使用高阶函数,用另一个函数把上面的sum包装一下:它接受一个函数f,并返回一个函数,这个函数接受x,判断递归终点,或调用f继续递归:
G = \f. \x. x == 0 ? 0 : f (x-1)
写成C++是这样的
auto G = [](function<int(int)> f) {
return [&](int x) {
return x == 0 ? : 0 : x + f(x-1);
};
};
现在我们发现,当有一个函数f使得G(f) = [](int x){return x == 0 ? 0 : x + f(x-1);} = f的时候,这个f正好是我们需要的匿名递归函数sum
G(f) = f,眼熟吗,还记得不动点这个概念吗,我们需要的匿名递归函数sum就是函数G的不动点
求解这个不动点sum,我们即可获得一个匿名递归函数,如何求解见附
最后的结果:sum = YG,Y和G前面已知,这样,sum是一个签名为int(int)的函数,是一个匿名递归函数
Y组合子也称不动点组合子,用这个方法可以求解一切匿名递归函数。
附:sum = YG使得G(sum) = sum的证明:
证明:对于任意G,G(YG) = YG
令W = \x. G(xx), X = WW //这个令真的太TM绝了,反正我是没想到
有X = WW = (\x. G(xx))W = G(WW) = G(X)
又因为YG = (\x. G(xx))(\x. G(xx)) = WW = X
所以G(X) = X就是G(YG) = YG
证毕
Lambda演算 - 简述Y组合子的作用的更多相关文章
- Y组合子
Y组合子 Y组合子的用处 作者:王霄池链接:https://www.zhihu.com/question/21099081/answer/18830200来源:知乎著作权归作者所有.商业转载请联系作者 ...
- 大到可以小说的Y组合子(二)
问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...
- Racket中使用Y组合子
关于Y组合子,网上已经介绍很多了,其作用主要是解决匿名lambda的递归调用自己. 首先我们来看直观的递归lambda定义, 假设要定义阶乘的lambda表达,C#中需要这么定义 Func<in ...
- 大到可以小说的Y组合子(一)
问:上回乱扯淡了一通,这回该讲正题了吧. 答:OK. 先来列举一些我参考过,并从中受到启发的文章. (1.)老赵的一篇文章:使用Lambda表达式编写递归函数 (2.)装配脑袋的两篇文章:VS2008 ...
- 大到可以小说的Y组合子(三)
答:关于Fix的问题你fix了吗? 问:慢着,让我想想,上次留下个什么问题来着?是说我们有了一个求不动点的函数Fix,但Fix却是显式递归的,是吧? 答:有劳你还记的这个问题. 问:Fix的参与背离了 ...
- 大到可以小说的Y组合子(零)
问:啊!我想要一个匿名的递归… 答:Y(音同Why)… … … 问:作为一位命令式语言的使用者,为什么会突然折腾起Y组合子呢? 答:的确,这事儿要从很久以前的几次搁浅开始说起…上学的时候,从来没有接触 ...
- 简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子
递归.哦,递归. 递归在计算机科学中的重要性不言而喻. 递归就像女人,即令人烦恼,又无法抛弃. 先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$. \[ {double} ...
- Haskell语言学习笔记(79)lambda演算
lambda演算 根据维基百科,lambda演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义.函数如何被应用以 ...
- [学习] 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑
函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...
随机推荐
- [C++] MyList<T>
完成作业型...保证无bug,完全没考虑效率. #include <iostream> using namespace std; #define DEBUG #ifdef DEBUG #d ...
- 一起来学习DOJO吧--序
DOJO的官方站点http://dojotoolkit.org/ DOJO是一套完整的javascript解决方案,从UI到类库都提供了全覆盖的支持. DOJO是一套很重的框架,在运用到项目中前请谨慎 ...
- test latex1
equation systems: \begin{equation} 1 + 2 = 3 \ 1 = 3 - 2 \end{equation} align text \begin{align} 1+2 ...
- 数据库SQL优化总结
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- 浅谈五大Python Web框架
转载:http://feilong.me/2011/01/talk-about-Python-web-framework 说到Web Framework,Ruby的世界Rails一统江湖,而Pytho ...
- eclipse安装ADT后在windows菜单下找不到android SDK and AVD Manager
eclipse安装ADT后在windows菜单下找不到android SDK and AVD Manager选项的解决办法 - zhjr1220的专栏 - 博客频道 - CSDN.NET http: ...
- strlen(); strcpy(); strcat(); strcmp() ---笔记
指针小知识点: int a =10; int *p=&a; int *q=p; //p中保存的是a的地址 int *q=p; //将p的值赋给q 作用是让q也指向a ...
- C++ exception
从没用过C++STL中的exception(异常类),在使用rapidxml,操作XML文件时,发现在一个抛出异常的错误.关注了下,就模范着做. 我也专门写了个函数来分配内存,如果发现分配不成功,就抛 ...
- Adb工具配置和设备连接
ADB全程Android Debug Bridge,是Android SDK里的一个工具,用这个工具可以直接操作管理Android模拟器或者真实的Android设备(如手机). 一.Adb工具使用配置 ...
- BingHack,Bing旁注API查询工具
现在旁注查询都失效了.通过网上查询发现有人说可以通过微软的API进行旁注查询 https://datamarket.azure.com/dataset/explore/bing/search 注册登录 ...