题意:给出一个图,有的边可以无限走,有的只能走两次(从一头到另一头为一次),给定两个起点以及对应的终点以及对应要走几个来回,求判断是否能完成。

先来一个NAIVE的建图:直接限制边建为容量1,无限制为INF,按照原图连,然后跑最大流就可以了。

可惜这样还不够,因为有可能有一部分流量不是对应的起点流过来的,即两条路有流量交换,这样就不一定可以满足题意了。

解决方法是:再跑一遍网络流,但是建图要改变一下,即将a路线的起点终点调换一下(当然b也可以),再接着跑,如果仍然满足则是真的有解。

证明看了网上的,都说的不太清楚,然后与ihopenot大爷讨论了下,有了一个证明(如果错了请指出)。

我们现在要证如果一开始的第一遍网络流跑出来满足条件并且第二遍也满足,则说明一定有真正满足题意的方案存在。

如果有交叉流,我们画一张图。

(因为使用的画图软件不能用减号,所以用下划线代替)其中As为起点,At为终点(B同理)

我们第二次建图后,如果能没有交叉流,那很好,直接说明有这种方案(因为倒过来是一样的嘛),但我们纠结的是,如果第二次仍然有交叉流怎么办?

我们画出来,发现,Bs到As有x的流量,第一张图又有As到Bt的x流量,那么这就是另一条x流量,与第一张图合起来不就是Bn吗,同理,A也是可以这样证明有满足条件且不交叉的流,那么就说明,我们如果两遍跑出来都满足,那就真的是有解的了。

送上代码

 #include<bits/stdc++.h>
using namespace std;
#define N 5005
#define INF 1e9
inline int read(){
int x=,f=; char a=getchar();
while(a>'' || a<'') {if(a=='-') f=-; a=getchar();}
while(a>='' && a<='') x=x*+a-'',a=getchar();
return x*f;
}
int n,d[N],head[N],cur[N],cnt,S,T,a1,a2,an,b1,b2,bn,ans;
bool vis[N],g[][],b[][];
queue<int>q;
char st[][];
struct edges{
int to,cap,flow,next;
}e[*N];
inline void insert(int u,int v,int c){
e[cnt]=(edges){v,c,,head[u]};head[u]=cnt++;
e[cnt]=(edges){u,,,head[v]};head[v]=cnt++;
}
inline bool bfs(){
memset(vis,,sizeof(vis));
d[S]=; vis[S]=; q.push(S);
while(!q.empty()){
int x=q.front(); q.pop();
for(int i=head[x];i>=;i=e[i].next)
if(!vis[e[i].to] && e[i].cap>e[i].flow)
d[e[i].to]=d[x]+,vis[e[i].to]=,q.push(e[i].to);
}
return vis[T];
}
int dfs(int x,int a){
if(x==T || !a) return a;
int f,flow=;
for(int& i=cur[x];i>=;i=e[i].next){
if(d[e[i].to]==d[x]+ && (f=dfs(e[i].to,min(a,e[i].cap-e[i].flow)))>)
flow+=f,e[i].flow+=f,e[i^].flow-=f,a-=f;
if(!a) break;
}
return flow;
}
inline int maxflow(){
int flow=;
while(bfs()){
for(int i=S;i<=T;i++) cur[i]=head[i];
flow+=dfs(S,INF);
}
return flow;
}
inline void build(){
memset(head,-,sizeof(head)); cnt=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(g[i][j]) insert(i,j,INF);
else if(b[i][j]) insert(i,j,);
}
int main(){
S=; T=;
while(scanf("%d",&n)!=EOF){
memset(g,,sizeof(g));
memset(b,,sizeof(b));
a1=read()+; a2=read()+; an=read();
b1=read()+; b2=read()+; bn=read();
for(int i=;i<=n;i++) scanf("%s",st[i]+);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(st[i][j]=='O') b[i][j]=;
else if(st[i][j]=='N') g[i][j]=;
bool flag=;
build(); insert(S,a1,an); insert(a2,T,an); insert(S,b1,bn); insert(b2,T,bn);
if(maxflow()<an+bn) flag=;
if(!flag){
build(); insert(S,a2,an); insert(a1,T,an); insert(S,b1,bn); insert(b2,T,bn);
if(maxflow()<an+bn) flag=;
}
if(flag) puts("No");
else puts("Yes");
}
return ;
}

bzoj3504: [Cqoi2014]危桥的更多相关文章

  1. BZOJ3504 CQOI2014危桥(最大流)

    如果只有一个人的话很容易想到最大流,正常桥连限流inf双向边,危桥连限流2双向边即可.现在有两个人,容易想到给两起点建超源两汇点建超汇,但这样没法保证两个人各自到达自己要去的目的地.于是再超源连一个人 ...

  2. bzoj3504: [Cqoi2014]危桥--最大流

    题目大意:给张无向图,有两个人a,b分别从各自的起点走向各自的终点,走A,B个来回,图里有些边只能走两次,求问是否能满足a,b的需求 按照题目给的表建图 S连a1,b1 a2,b2连T 跑最大流看是否 ...

  3. [BZOJ3504][CQOI2014]危桥(最大流)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3504 分析:很容易想到最大流,但如果S-a1,S-b1,a2-T,b2-T这样跑S-T最大流判 ...

  4. bzoj3504: [Cqoi2014]危桥 网络流

    一种网络流建图的思路吧,改天最好整理一波网络流建图思路 #include <bits/stdc++.h> using namespace std; int n,h,t,a1,a2,an,b ...

  5. BZOJ 3504: [Cqoi2014]危桥 [最大流]

    3504: [Cqoi2014]危桥 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1407  Solved: 703[Submit][Status] ...

  6. Luogu3163 [CQOI2014]危桥 ---- 网络流 及 一个细节的解释

    Luogu3163 [CQOI2014]危桥 题意 有$n$个点和$m$条边,有些边可以无限次数的走,有些边这辈子只能走两次,给定两个起点和终点$a_1 --> a_2$(起点 --> 终 ...

  7. 3504: [Cqoi2014]危桥

    3504: [Cqoi2014]危桥 链接 分析: 首先往返的可以转化为全是“往”,那么只要将容量除以2即可. 然后S向a1连边容量为an(除以2之前为2*an),S向a2连边容量为an,b1,b2向 ...

  8. bzoj千题计划137:bzoj [CQOI2014]危桥

    http://www.lydsy.com/JudgeOnline/problem.php?id=3504 往返n遍,即单向2*n遍 危桥流量为2,普通桥流量为inf 原图跑一遍最大流 交换b1,b2再 ...

  9. 【BZOJ3504】危桥(网络流)

    [BZOJ3504]危桥(网络流) 题面 BZOJ 洛谷 Description Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1.某些岛屿之间有桥相连,桥上的道路是双 向的, ...

随机推荐

  1. ubuntu各种应用安装

    微信安装,编译包下载,双击electronic-wechat就能用了,记得lock在launcher上 https://github.com/geeeeeeeeek/electronic-wechat ...

  2. JITComVCTK无法访问

    源代码第一次加载时会遇到JITComVCTK无法访问的问题,这是因为没有注册该第三方插件,需要到文件夹"\CommonFiles\dll\JITComVCTK"下注册,具体方式: ...

  3. .NET蓝牙开源库:32feet.NET

    在用C#调用蓝牙编程一文中我留个小悬念就是:InTheHand.Net.Personal.dll是怎么来的?这篇文章来解答这个问题,InTheHand.Net.Personal.dll就是来源于今天要 ...

  4. windows server 2012 r2 远程桌面连接指南

    具体详情请阅览文档  http://pan.baidu.com/s/1jHTCpW6 windows server 2012 r2 远程桌面连接指南 - 作者 rick·bao - 日期 2016-0 ...

  5. 【转载】DOS 系统和 Windows 系统有什么关系?为什么windows系统下可以执行dos命令?

    作者:bombless 因为不同的系统都叫 Windows ,这些系统在界面上也有一定连续性并且因此可能造成误解,所以有必要稍微梳理一下几个不同的 Windows 系统.首先是 DOS 上的一个图形界 ...

  6. 工作上遇到的问题 DEBUG 001

    java文件断点跳到对应的class文件解决方式 我也是第一次遇到这个问题,找了很久解决办法.后面找开发组老大才解决. 问题描述: 调试程序,在ExportAction.java文件打断点.debug ...

  7. java.net.UnknownHostException: promote.cache-dns.local: unknown error

    一.错误 程序启动时提示如下错误: java.net.UnknownHostException: promote.cache-dns.local: unknown error 直译就是: 主机名pro ...

  8. Android Button上的文字自动变成大写,如何解决呢?

    android:textAllCaps="false"手动添加这一行,就不会有烦恼了.

  9. C# java MD5加密方不一致问题

    说来惭愧,做开发几年了,一直在吸取,今天也写写自已关于技术的一点点理解,不正之处,请大家多多指点. 由于之前开发的项目使用的是C#,用户信息使用的C#的MD5加密码方式,而现在需要切换到Java平台下 ...

  10. 让Java和MySQL连接起来

    Java 连接 MySQL 需要驱动包,可以下载菜鸟教程提供的 jar 包:http://static.runoob.com/download/mysql-connector-java-5.1.39- ...