LINK


题目大意

给你n个物品,每一个物品有一个位置p和一个权值w,移动一个物品的代价是移动距离*物品权值

有q个询问:

  1. 把第i个物品的权值变成j
  2. 问把第l到第r个物品移动到一个相邻的区间中\([x,x+r-l]\),问你最小的代价

思路

首先我们很显然地发现一定是可以固定一个位置不动的,然后把剩下的移动到这个位置附近

接下来我们考虑怎么找到这个位置

我们设\(S_{(l,r)}=\sum_{i=l}^r w_i\)

假设我们现在要固定移动\([l,r]\)这个区间,且区间中的第k个位置不变,现在考虑这个状态移动第k+1个位置不变的差量

是:\(S_{(l,k)}*(p_{k+1}-p_{k})-S_{(k+1,r)}*(p_{k+1}-p_{k})\)

当且仅当\(S_{(l,k)}\le S_{(k+1,r)}\)时会使答案更优

所以就可以找到一个最大的位置k满足上述条件

接下来考虑怎么计算固定k的代价

对于\(i\in (l,k)\)代价是\(\sum_{i=l}^k(p_k-p_i-(k-i))*w_i\)

对于\(i\in (k,r)\)代价是\(\sum_{i=k}^r(p_i-p_l-(i-k))*w_i\)

我们令\(a_i=p_i-i\)

有:\(ans=\sum_{i=l}^k(p_k-p_i)*w_i+\sum_{i=k}^r(p_i-p_l)*w_i\)

整理一下变成

\(ans=p_k*(S_{l,k}-S_{k,r})-(\sum_{i=l}^kw_ip_i-\sum_{i=k}^rw_ip_i)\)

于是直接开两个线段树分别维护就可以了


#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define IL inline
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
#define FLIE ""
IL LL read(){
LL ans=0,w=1;char c=getchar();
while(!isdigit(c)&&c!='-')c=getchar();
if(c=='-')w=-1,c=getchar();
while(isdigit(c))ans=(ans<<1)+(ans<<3)+c-'0',c=getchar();
return ans*w;
}
#define N 300010
#define LD (t<<1)
#define RD (t<<1|1)
#define Mod 1000000007
LL sum1[N<<2],sum2[N<<2];
int a[N],w[N];
int n,q;
LL mod(LL a){a%=Mod;if(a<0)a+=Mod;return a;}
LL add(LL a,LL b){return mod(a+b);}
LL mul(LL a,LL b){return mod(a*b);}
void pushup1(int t){sum1[t]=sum1[LD]+sum1[RD];}
void pushup2(int t){sum2[t]=add(sum2[LD],sum2[RD]);}
void modify1(int t,int l,int r,int pos,LL vl){
if(l==r){sum1[t]=vl;return;}
int mid=(l+r)>>1;
if(pos<=mid)modify1(LD,l,mid,pos,vl);
else modify1(RD,mid+1,r,pos,vl);
pushup1(t);
}
void modify2(int t,int l,int r,int pos,LL vl){
if(l==r){sum2[t]=vl;return;}
int mid=(l+r)>>1;
if(pos<=mid)modify2(LD,l,mid,pos,vl);
else modify2(RD,mid+1,r,pos,vl);
pushup2(t);
}
LL query1_sum(int t,int l,int r,int L,int R){
if(L<=l&&r<=R)return sum1[t];
int mid=(l+r)>>1;
if(R<=mid)return query1_sum(LD,l,mid,L,R);
if(L>mid)return query1_sum(RD,mid+1,r,L,R);
return query1_sum(LD,l,mid,L,mid)+query1_sum(RD,mid+1,r,mid+1,R);
}
int query1_pos(int t,int l,int r,int L,int R,LL vl){
if(l==r)return l;
int mid=(l+r)>>1;
if(R<=mid)return query1_pos(LD,l,mid,L,R,vl);
if(L>mid)return query1_pos(RD,mid+1,r,L,R,vl);
LL suml=query1_sum(LD,l,mid,L,mid);
if(suml>=vl)return query1_pos(LD,l,mid,L,mid,vl);
else return query1_pos(RD,mid+1,r,mid+1,R,vl-suml);
}
LL query2_sum(int t,int l,int r,int L,int R){
if(L<=l&&r<=R)return sum2[t];
int mid=(l+r)>>1;
if(R<=mid)return query2_sum(LD,l,mid,L,R);
if(L>mid)return query2_sum(RD,mid+1,r,L,R);
return add(query2_sum(LD,l,mid,L,mid),query2_sum(RD,mid+1,r,mid+1,R));
}
int main(){
freopen("input.txt","r",stdin);
n=read();q=read();
fu(i,1,n)a[i]=read(),a[i]-=i;;
fu(i,1,n)w[i]=read();
fu(i,1,n){
modify1(1,1,n,i,w[i]);
modify2(1,1,n,i,mul(a[i],w[i]));
}
while(q--){
int x=read(),y=read();
if(x<0){
x=-x;
w[x]=y;
modify1(1,1,n,x,w[x]);
modify2(1,1,n,x,mul(a[x],w[x]));
}else{
LL sum=query1_sum(1,1,n,x,y);
int pos=query1_pos(1,1,n,x,y,(sum+1)>>1);
LL ans=0;
ans=add(ans,mul(a[pos],add(query1_sum(1,1,n,x,pos),-query1_sum(1,1,n,pos,y))));
ans=add(ans,add(-query2_sum(1,1,n,x,pos),query2_sum(1,1,n,pos,y)));
printf("%lld\n",ans);
}
}
return 0;
}

Codeforces 1030F 【线段树】【好题】的更多相关文章

  1. Lucky Array CodeForces - 121E (线段树,好题)

    题目链接 题目大意: 定义只含数字$4,7$的数字为幸运数, 给定序列, 区间加正数, 区间询问多少个幸运数 题解: 对于每一个数, 求出它和第一个比它大的幸运数之差, 则问题转化为区间加,查询$0$ ...

  2. Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition) E - Nikita and stack 线段树好题

    http://codeforces.com/contest/760/problem/E 题目大意:现在对栈有m个操作,但是顺序是乱的,现在每输入一个操作要求你输出当前的栈顶, 注意,已有操作要按它们的 ...

  3. [AHOI 2009] 维护序列(线段树模板题)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小 ...

  4. POJ 3468 线段树裸题

    这些天一直在看线段树,因为临近期末,所以看得断断续续,弄得有些知识点没能理解得很透切,但我也知道不能钻牛角尖,所以配合着刷题来加深理解. 然后,这是线段树裸题,而且是最简单的区间增加与查询,我参考了A ...

  5. hdu-1540线段树刷题

    title: hdu-1540线段树刷题 date: 2018-10-18 19:55:21 tags: acm 刷题 categories: ACM-线段树 概述 哇,,,这道线段树的题可以说是到目 ...

  6. hdu-5023线段树刷题

    title: hdu-5023线段树刷题 date: 2018-10-18 13:32:13 tags: acm 刷题 categories: ACM-线段树 概述 这道题和上次做的那道染色问题一样, ...

  7. poj-2777线段树刷题

    title: poj-2777线段树刷题 date: 2018-10-16 20:01:07 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道线段树的染色问题,,, ...

  8. zoj-1610线段树刷题

    title: zoj-1610线段树刷题 date: 2018-10-16 16:49:47 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道简单的线段树区间染色问 ...

  9. hdu 1754 I Hate It 线段树基础题

    Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求, ...

  10. 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)

    点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...

随机推荐

  1. Linux 安装rabbitmq 遇到的一些问题

    Linux下防火墙开启相关端口及查看已开启端口 https://www.cnblogs.com/pizitai/p/6518987.htmlhttps://www.cnblogs.com/blog-y ...

  2. 淘海外分发Job 多线程demo

    using System;using System.Collections.Generic;using System.Configuration;using System.Diagnostics;us ...

  3. APP Inventor 基于网络微服务器的即时通信APP

    APP Inventor 基于网络微服务器的即时通信APP 一.总结 一句话总结:(超低配版的QQ,逃~) 1.APP Inventor是什么? google 傻瓜式 编程 手机 app App In ...

  4. Konva的使用

    KonvaJS 快速入门 Konva 是一个 基于 Canvas 开发的 2d js 框架库, 它可以轻松的实现桌面应用和移动应用中的图形交互交互效果. Konva 可以高效的实现动画, 变换, 节点 ...

  5. java socket 判断Socket连接失效

    要判断socket连接链路是否可用时,不能通过socket.isClosed() 和 socket.isConnected() 方法判断,要通过心跳包 socket.sendUrgentData(0x ...

  6. webBrowser.DocumentText重新赋值无效解决方法

    因为webBrowser这个控件的webBrowser.DocumentText是异步的,所以要自己调用刷新: webBrowser.Navigate("about:blank") ...

  7. 1-23-shell脚本之-if流程控制语句和for循环语句的使用

    大纲: 1.逻辑判断 2.if流程控制语句 3.for循环控制语句   ---------------------------------------------- 在开始之前,先了解一下逻辑判断符号 ...

  8. C++:override和final

    1. override 重载 当你在父类中使用了虚函数时候,你可能需要在某个子类中对这个虚函数进行重写,以下方法都可以: class A { virtual void foo(); } class B ...

  9. PKUSC2013 BUG集锦

    如果今年考试真的是这个难度,那比的就是速度和准确度了…… a A:不明觉厉 B:推公式后不明觉厉 C:树的HASH D:不明觉厉 E:QAQ 复制代码'-'忘改'+' WA×1, F:QAQ 请输出 ...

  10. angular2 post以“application/x-www-form-urlencoded”形式传参的解决办法

    angular2 post以“application/x-www-form-urlencoded”形式传参的解决办法 http://blog.csdn.net/tianjun2012/article/ ...