有n个数字,a11,a22,…,ann。有一个集合,刚开始集合为空。然后有一种操作每次向集合中加入一个数字或者删除一个数字。每次操作给出一个下标x(1 ≤ x ≤ n),如果axx已经在集合中,那么就删除axx,否则就加入axx。

问每次操作之后集合中互质的数字有多少对。

注意,集合中可以有重复的数字,两个数字不同当且仅当他们的下标不同。

比如a11=a22=1。那么经过两次操作1,2之后,集合之后存在两个1,里面有一对互质。

Input单组测试数据。 
第一行包含两个整数n 和 q (1 ≤ n, q ≤ 2 × 10^5)。表示数字的种类和查询数目。 
第二行有n个以空格分开的整数a11,a22,…,ann (1 ≤ aii ≤ 5 × 10^5),分别表示n个数字。 
接下来q行,每行一个整数x(1 ≤ x ≤ n),表示每次操作的下标。Output对于每一个查询,输出当前集合中互质的数字有多少对。Sample Input

样例输入1
5 6
1 2 3 4 6
1
2
3
4
5
1
样例输入2
2 3
1 1
1
2
1

Sample Output

样例输出1
0
1
3
5
6
2
样例输出2
0
1
0

题意:给定一个数组,现在全部数都没有填进对于的位置上去。现在,有一些操作,或是把a[i]填到i位置,或是把a[i]从i位置取出来。问当前填进去的数列有多少个互质对。

思路:显然可以用容斥定理来做。怎么破? 对于当前的集合(大小为N),我加一个x进去,会增加多少互质对呢?答案是N-与x不互质的个数。

对于x的所有约数去重,比如N=5;x=24。add=N-有约数2的个数-有约数3个个数+有约数4的个数+有约数6的个数+0*有约数12的个数+0*有约数24的个数。

对于它前面的符号,取决于约数的素因子factor:

如果factor为1,它就是1;

如果factor有平方因子,符号为0;  如12=2*2*3

如果factor有奇数个素数,符号为-1; 如2

如果factor有偶数个素数,符号为1;如6

所以,我们先用筛法得到每个数的约数(O(NlgN));

然后加一个数x,用上面的方法,求出多了多少个素数对。我们就对x的所有约数++;

反之亦然;

(不加输出优化会TLE

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
int p[maxn+],cnt;
short int vis[maxn+],mu[maxn+];
void read(int &x){ //输入
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void Put(ll x) //输出
{
if(x>) Put(x/);
putchar(x%+'');
}
void prime() //筛莫比乌斯数
{
mu[]=; for(int i=;i<=maxn;i++){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
for(int j=;j<=maxn&&i*p[j]<=maxn;j++){
vis[i*p[j]]=; mu[i*p[j]]=-mu[i];
if(i%p[j]==) { mu[i*p[j]]=; break; }
}
}
}
int a[],num[maxn+];ll ans;
vector<int>G[maxn+];
int main()
{
prime();
int N,Q,x,i,j,Max=;
scanf("%d%d",&N,&Q);
for(i=;i<=N;i++) read(a[i]),Max=max(Max,a[i]),vis[i]=;
for(i=;i<=Max;i++){ //筛约数
for(j=i;j<=Max;j+=i)
G[j].push_back(i);
}
while(Q--){
read(x);
int L=G[a[x]].size();
if(vis[x]==){
for(i=;i<L;i++) num[G[a[x]][i]]--;
for(i=;i<L;i++) ans-=mu[G[a[x]][i]]*num[G[a[x]][i]];
}
else {
for(i=;i<L;i++) ans+=mu[G[a[x]][i]]*num[G[a[x]][i]];
for(i=;i<L;i++) num[G[a[x]][i]]++;
}
vis[x]=vis[x]^;
Put(ans); puts("");
}
return ;
}

51Nod 1439:互质对(用莫比乌斯来容斥)的更多相关文章

  1. 51 nod 1439 互质对(Moblus容斥)

    1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...

  2. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  3. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  4. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  5. Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)

    题意: 求1 - s 中 找出k个数 使它们的gcd  > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数  求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...

  6. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  7. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  8. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  9. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

随机推荐

  1. url拼接

    在做网页抓取的时候经常会遇到一个问题就是页面中的链接是相对链接,这个时候就需要对链接进行url拼接,才能得到绝对链接. url严格按照一定的格式构成,一般为如下5个字段: 详细可参考RFC:http: ...

  2. js创建表格

    js创建一个表格,其中的表头已经有了,要从json中读取的数据一行一行地创建表格 function create_table(data){ tableNode = document.getElemen ...

  3. Oracle函数中文转拼音(首字母)

    CREATE OR REPLACE FUNCTION FUN_GET_PYCODE(p_str IN VARCHAR2, p_flag NUMBER DEFAULT NULL) RETURN VARC ...

  4. uva 1619 - Feel Good || poj 2796 单调栈

    1619 - Feel Good Time limit: 3.000 seconds   Bill is developing a new mathematical theory for human ...

  5. Nordic nRF5 SDK和softdevice介绍

    SDK和Softdevice的区别是什么?怎么选择SDK和softdevice版本?芯片,SDK和softdevice有没有版本兼容问题?怎么理解SDK目录结构?SDK帮助文档在哪里?Softdevi ...

  6. SSM整合报错org.springframework.beans.factory.UnsatisfiedDependencyException

    我解决的办法是把.m2仓库所有文件删除,重新maven project就可以了. 但是在做这一步之前,报错如下: ①org.springframework.beans.factory.Unsatisf ...

  7. angularjs控制器之间的数据共享与通信

    1.可以写一个service服务,从而达到数据和代码的共享; var app=angular.module('app',[]); app.service('ObjectService', [Objec ...

  8. 值得推荐的10本PHP书籍(转)

    值得推荐的10本PHP书籍(转) 一.总结 一句话总结: 二.值得推荐的10本PHP书籍 本篇文章的目的是想较全面地推荐10本PHP书籍,暂不讨论Linux/NGINX/Mysql等其他丛书. 前言 ...

  9. ZOJ 2599 Graduated Lexicographical Ordering ★(数位DP)

    题意 定义两个数的比较方法,各位数字之和大的数大,如果数字和相等则按字典序比较两个数的大小.输入n,k,求:1.数字k的排名:2.排名为k的数. 思路 算是一类经典的统计问题的拓展吧~ 先来看第一问. ...

  10. influxdb和boltDB简介——MVCC+B+树,Go写成,Bolt类似于LMDB,这个被认为是在现代kye/value存储中最好的,influxdb后端存储有LevelDB换成了BoltDB

    influxdb influxdb是最新的一个时间序列数据库,最新一两年才产生,但已经拥有极高的人气.influxdb 是用Go写的,0.9版本的influxdb对于之前会有很大的改变,后端存储有Le ...