Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power wk then value of power of a new tower will be {wk}p.

Rocks are added from the last to the first. That is for sequence w1, ..., wm value of power will be

After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.

Input

First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).

Second line of input contains n integers wk (1 ≤ wk ≤ 109) which is the power of rocks that priests have.

Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.

kth of next q lines contains two integers lk and rk (1 ≤ lk ≤ rk ≤ n).

Output

Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks lk, lk + 1, ..., rk.

Example
Input
6 1000000000
1 2 2 3 3 3
8
1 1
1 6
2 2
2 3
2 4
4 4
4 5
4 6
Output
1
1
2
4
256
3
27
597484987
Note

327 = 7625597484987

题意:给出一个数字序列和一个固定的模数mod,给出q个询问,每次询问f(l,r)

f(l,r) =a[l]^(a[l+1]^(a[l+2]^(a[l+3]^(...^a[r])))%mod (^是幂次的意思)

题解:扩展欧拉定理告诉我们

然后我们尝试展开a^b^c

再往下也是一样的,我们可以先预处理出phi[p],phi[phi[p]]……

大概要处理几层呢?logn层,为什么呢?

假设phi[now]=1了

那么之上不管多少层

x=1,2,3,4,5……

这些数模一都是一

所以就成了欧拉函数的衰变速度(我瞎糊的名词,意思是经过几次phi,p会变成1)

这个复杂度是logn的,我们可以对这进行一发dfs,加上快速幂的logn复杂度,总复杂度是loglogn的,值得一提的是,快速幂中也要改成扩展欧拉定理的形式,否则小心炸掉~

顺便可以研究一下这道题是怎么被博主伪装成线段树的

U23882 天真♂哲学家♂树(Naive Philosopher Tree)

代码如下:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; int a[],phi[],n,m,mod; int get(int x)
{
int ans=x;
for(int i=;i*i<=x;i++)
{
if(x%i==)
{
ans=ans/i*(i-);
while(x%i==)
{
x/=i;
}
}
}
if(x!=)
{
ans=ans/x*(x-);
}
return ans;
} int gg(long long x,int p)
{
return x>=p?x%p+p:x;
} int kasumi(int a,int b,int p)
{
int ans=;
while(b)
{
if(b&)
{
ans=gg(1ll*ans*a,p);
}
a=gg(1ll*a*a,p);
b>>=;
}
return ans;
} int dfs(int l,int r,int i)
{
if(l==r||phi[i]==)
{
return gg(a[l],phi[i]);
}
return kasumi(a[l],dfs(l+,r,i+),phi[i]);
} int main()
{
scanf("%d%d",&n,&mod);
phi[]=mod;
for(int i=;i<=;i++)
{
phi[i]=get(phi[i-]);
}
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",dfs(l,r,)%mod);
}
return ;
}

CodeForces 907F Power Tower(扩展欧拉定理)的更多相关文章

  1. [CodeForces - 906D] Power Tower——扩展欧拉定理

    题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...

  2. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

  3. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  4. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  5. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  6. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  7. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  8. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  9. [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】

    题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...

随机推荐

  1. Svg 和 canvas的区别

    Canvas 和 SVG 都允许您在浏览器中创建图形,但是它们在根本上是不同的. SVG SVG 是一种使用 XML 描述 2D 图形的语言. SVG 基于 XML,这意味着 SVG DOM 中的每个 ...

  2. win iso download

    http://rufus.akeo.ie/ window iso download http://win.86tyu.cn/ylmf32win7.html

  3. 手把手教你使用node-inspector调试nodejs

    最近再看nodejs,这个东西是运行在服务端的,也就是说我们在客户端看不到相应的js代码,那么怎么调试了?目前主流的方法有三种.第一是采用node-inspector.第二种采用nodejs内置的调试 ...

  4. Variant

    class RTL_DELPHIRETURN Variant: public TVarData Variant转换为字符串 System::Variants::VarToStr VariantArra ...

  5. 【开发工具】Jenkins+Gitlab实现自动化部署

    我在尝试在容器中安装Jenkins时,初衷是希望使用docker in docker 的模式来实现Jenkins slave容器按需创建.在实现的时候需要在Jenkins 中安装Kubernetes插 ...

  6. 【297】IDL 过程、函数&关键字参数

    目录: 一.Procedure 1.1 基本说明&定义 1.2 关键字参数 二.Function 2.1 基本说明&定义 2.2 关键字参数 参考:IDL中函数中的带有关键字的参数的使 ...

  7. PHP - 闭合标签

    最最开始的时候经常遇到这个问题,就是如果一个文件里面全部都是php代码的话,我写了前闭合和后闭合的时候,文件一多就容易报错,老是说什么有关输出的错误,貌似大概就是header已经发了. 手册上面这个样 ...

  8. if __name__ == '__main__'的作用和原理

    最简单的理解就是这样: __name__ 是当前模块名,当模块被直接运行时,模块名为 __main__. 所以 if __name__ == '__main__' 这句话的意思就是当前模块被直接运行时 ...

  9. centos7 yum 安装jq

    一.简介 EPEL是企业版 Linux 附加软件包的简称,EPEL是一个由Fedora特别兴趣小组创建.维护并管理的,针对 红帽企业版 linux(RHEL)及其衍生发行版(比如 CentOS.Sci ...

  10. MD5类库(hex_md5)

    /*  * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message  * Digest Algorithm, as ...