一、卡特兰数(Catalan number)

1.定义

组合数学中一个常出现在各种计数问题中出现的数列(用c表示)。以比利时的数学家欧仁·查理·卡特兰的名字来命名;

2.计算公式

(1)递推公式

c[n]=Σ(0≤k<n)c[k]c[n-k-1],边界条件为c[0]=1;

其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合;

根据组合公式我们可以化简得c[n]=2n
(2n-1).....(n+2)/n!;

(2)另类递推式

c[n]=c[n-1](4n-2)/(n+1),边界条件为c[0]=1;

其递推解为c[n]=C(2n,n)-C(2n,n-1),C表示数的组合;

(3)其他公式

c[n]=(Σ(0≤i≤n)C(i,n)^2)/(n+1);

ps:通过展开可以发现它们的本质是一样的;

3.简单应用

(1)求解路径方案数:如图所示,从原点(0,0)到点B(n,n),只能向右或向上进行长度为一个单位的移动,路线一直处于y=x之下(不越过直线y=x)的不同路径方案数;

Solution:每个n的解都可以看做先前的解数(再向右向上即为所求)加上不触及各个y=x上的点到达B点的方案数,可以发现其递推公式即为卡特兰数计算公式;

(2)求01串的个数:n个0与n个1构成的序列方案数,使得任何一个前缀0的个数不少于1的个数;

Solution:将0看做在坐标系中向右走一步,1看做向上走一步,则问题可化简为从原点到(n,n)所有路线中一直处于y=x之下(不越过直线y=x)的不同路径方案数,与上题相同,方案数即为对应n的卡特兰数;

(3)给定节点求解二叉树的个数:已知由n个节点,求形成不同的二叉树有多少种?

Solution:将向左生成子树看做0,向右生成字数看成1,则问题化简为求n/2个0和n/2个1构成数串的不同方案数,即上题无条件解的一半,与上题答案相同,形成不同的树的个数即为对应n的卡特兰数;

(4)求凸边形进行三角剖分的不同方案数:在一个有n+3条边的凸多边形中,求通过若干条互不相交的对角线,把这个多边形划分成若干个三角形的不同方案数。

Solution:因为每一条边都一定是剖分后的三角形的一条边,任意一条边都会把多边形分成两个小多边形,那么根据乘法原理,解即为划分成不同多边形的方案数对应小多边形的划分方案数之和,即f[n]=Σ(3≤k≤n-3)f[k]f[n-k-1],可以发现解数即为n对应的卡特兰数;

(5)n对括号正确匹配数目:给定n对括号,求括号正确配对的字符串数;

Solution:因为是匹配问题,那么最后一个左括号必然有唯一右括号与其匹配,假设f[n]为n对括号的正确配对数目,那么有递推关系f[n]=f[0]f[n-1]+f[1]f[n-2]+...+f[n-1]f[0],显然f[n]是n对应的卡特兰数。

4.卡特兰数的扩展(折线原理)

对于在n位的2进制中,有m个0,其余为1的catalan数为:C(n,m)-C(n,m-1)。其可由应用(1)证明;

二、相关应用

1.[NOIP2003]栈

题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8481413.html

2.[洛谷P1722]矩阵II

Description

给定一个长度为2n的数列,现让你自由地放入红色算筹和黑色算筹,求对于所有的i(1<=i<=2n),使第1~i格中红色算筹个数大于等于黑色算筹的方案数;

输入:n

输出:对100取模后的方案数;

Solution

1.将红看做入栈操作,黑看为出栈操作,问题即为求不同的合法的入栈出栈序个数;

2.那么解法与上题相同,易得解即为对应的卡特兰数;

3.我们可以考虑用递推式(1)求卡特兰数,取模更容易;

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int main(){
unsigned long long ctl[110],i,j,k,n;
memset(ctl,0,sizeof(ctl));
ctl[0]=ctl[1]=1;
ctl[2]=2;
scanf("%d",&n);
for(i=3;i<=n;++i)
for(j=0;j<i;++j){
ctl[i]+=ctl[j]*ctl[i-j-1];
ctl[i]%=100;
}
printf("%d\n",ctl[n]);
return 0;
}

3.[洛谷P1976]鸡蛋饼

Description

最近小 x 又发现了一个关于圆的有趣的问题:在圆上有2N 个不同的点,小 x 想用 N 条线段把这些点连接起来(每个点只能连一条线段), 使所有的线段都不想交,他想知道这样的连接方案有多少种?

输入输出格式

输入格式:有且仅有一个正整数 N

输出格式:要求的方案数(结果 mod 100000007)。

Solution

1.可将问题化简为求n+3边形进行三角剖分的方案数,解法就显而易见了;

2.对1e8+7取模可以考虑使用递推公式(1)解决;

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int main(){
unsigned long long ctl[32768],i,j,k,n;
memset(ctl,0,sizeof(ctl));
ctl[0]=ctl[1]=1;
ctl[2]=2;
scanf("%d",&n);
for(i=3;i<=n;++i)
for(j=0;j<i;++j){
ctl[i]+=ctl[j]*ctl[i-j-1];
ctl[i]%=100000007;
}
printf("%d\n",ctl[n]);
return 0;
}

4.[AHOI2012]树屋阶梯

题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8481432.html

5.[HNOI2009]有趣的数列

题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8481448.html

6.[SCOI2010]生成字符串(卡特兰数的扩展)

题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8481454.html

浅谈卡特兰数(Catalan number)的原理和相关应用的更多相关文章

  1. 卡特兰数 catalan number

    作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...

  2. 卡特兰数(Catalan Number) 算法、数论 组合~

    Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...

  3. 【知识总结】卡特兰数 (Catalan Number) 公式的推导

    卡特兰数的英文维基讲得非常全面,强烈建议阅读! Catalan number - Wikipedia (本文中图片也来源于这个页面) 由于本人太菜,这里只选取其中两个公式进行总结. (似乎就是这两个比 ...

  4. 卡特兰数(Catalan Number) 学习笔记

    一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...

  5. [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析

    本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...

  6. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

  7. 浅谈Eclipse调用Tomcat服务的原理

    浅谈Eclipse调用Tomcat服务的原理 转:http://www.thinksaas.cn/group/topic/341645/ 转:http://www.173it.cn/Html/?581 ...

  8. ACM数论-卡特兰数Catalan

    Catalan 原理: 令h(0)=1,h(1)=1,catalan 数满足递归式: (其中n>=2) 另类递推公式: 该递推关系的解为: (n=1,2,3,...) 卡特兰数的应用实质上都是递 ...

  9. 卡特兰数 Catalan 笔记

    一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>= ...

随机推荐

  1. HTML图片标签

    <body> <!-- 使用img标签来向网页中引入外部的图片, img标签也是一个自结束标签 属性: src:设置一个外部图片的路径 alt:可以用来设置图片不能显示时,就会显示图 ...

  2. java.lang.NoClassDefFoundError: Lcom/opensymphony/xwork2/util/logging/Logger tomcat6 启动错误

    用tomcat6启动时,出现下面的错误Java.lang.NoClassDefFoundError: Lcom/opensymphony/xwork2/util/logging/Logger; Cau ...

  3. CentOS安装crontab及使用方法(转)

    CentOS安装crontab及使用方法(转)    安装crontab:[root@CentOS ~]# yum install vixie-cron[root@CentOS ~]# yum ins ...

  4. Q3 大型科技公司季报

    1. alphabet Alphabet(谷歌母公司)今天发布了截至9月30日的2018财年第三季度财报.报告显示,Alphabet第三季度总营收为337.40亿美元,比上年同期的277.72亿美元增 ...

  5. 常用的一些sql

    --根据某一列中包括的逗号将一行数据变多行 select a,c from (with test as (select 'abc' a,'1,2,3' c from dual e) select a, ...

  6. struts.xml 文件中的 namespace 属性图文详解

    namespace:名称空间.默认值是""(空字符串). 名称空间+动作名称:构成了动作的访问路径

  7. Spring学习-1 框架总览

    Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架. spring ...

  8. 【计算机网络】NAT:网络地址转换

    NAT(Network Address Translation,网络地址转换)是1994年提出的.当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和因 ...

  9. 【bzoj1067】[SCOI2007]降雨量 倍增RMQ

    题目描述 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年.例如2002,2003,2004和200 ...

  10. 【比赛】HNOI2018 排列

    这题原题... 这题题面七绕八绕,有点麻烦,反正最后转化就是一棵树,每个点有一个值,要把所有点选完,要求选择一个点必须是它的父亲和祖先已经全部被选了,贡献是这个点的权值乘上它被选择的排名 如果一个点是 ...