【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)
http://www.lydsy.com/JudgeOnline/problem.php?id=1677
完全背包很容易想到,将1,2,4...等作为物品容量即可。
然后这题还有一个递推式
f[i]==f[i-1], 当i%2==1
f[i]==f[i-1]+f[i/2], 当i%2==0
当i为奇数时,我们可以看为i-1加上一个1的情况,那么只有f[i-1]中情况(因为每种情况只是多了一个1)
当i为偶数时,分为2种情况,含有1和不含有1,当含有1时,那么情况就是f[i-1],当不含有1时,情况就是f[i/2],因为不含有1他们都可以被2整除
背包:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005, MD=1000000000;
int f[N], n; int main() {
read(n);
f[0]=1;
for1(i, 0, 30) {
int s=1<<i;
if(s>n) break;
for(int j=s; j<=n; ++j)
{ f[j]+=f[j-s]; f[j]%=MD; }
}
print(f[n]);
return 0;
}
递推:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1000005;
int f[N], n; int main() {
read(n);
f[1]=1;
for1(i, 2, n) {
f[i]=f[i-1];
if(!(i&1)) f[i]+=f[i>>1];
f[i]%=1000000000;
}
print(f[n]);
return 0;
}
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
给出一个N(1≤N≤10^6),使用一些2的若干次幂的数相加来求之.问有多少种方法
Input
一个整数N.
Output
方法数.这个数可能很大,请输出其在十进制下的最后9位.
Sample Input
Sample Output
有以下六种方式
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
HINT
Source
【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)的更多相关文章
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )
完全背包.. --------------------------------------------------------------------------------------- #incl ...
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和
题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 617 Solved: 344[Su ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- bzoj 1677: [Usaco2005 Jan]Sumsets 求和【dp】
设f[i]为i的方案数,f[1]=1,考虑转移,如果是奇数,那么就是f[i]=f[i-1]因为这1一定要加:否则f[i]=f[i-1]+f[i>>1],就是上一位+1或者i/2位所有因子乘 ...
- 1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 626 Solved: 348[Submi ...
- BZOJ1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 570 Solved: 310[Submi ...
- 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推
... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...
- [Usaco2005 Jan]Sumsets 求和
Description Farmer John commanded his cows to search for different sets of numbers that sum to a giv ...
- BZOJ 1679: [Usaco2005 Jan]Moo Volume 牛的呼声( )
一开始直接 O( n² ) 暴力..结果就 A 了... USACO 数据是有多弱 = = 先sort , 然后自己再YY一下就能想出来...具体看code --------------------- ...
随机推荐
- Python 更新set
更新set 由于set存储的是一组不重复的无序元素,因此,更新set主要做两件事: 一是把新的元素添加到set中,二是把已有元素从set中删除. 添加元素时,用set的add()方法: weekday ...
- vue的全家桶
自定义指令 <div v-demo="{ color: 'white', text: 'hello!' }"></div> Vue.directive('d ...
- 安卓手机GPU OpenCL总结(转)
前段时间,把市面上手机GPU OpenCL支持情况做了一个总结.总结如下: 目前,手机 GPU 市面有四个公司产品:Qualcomm, Imagination Technologies,ARM, Vi ...
- ‘close’ was not declared in this scope
‘close’ was not declared in this scope ‘read’ was not declared in this scope ‘sysconf’ was not decla ...
- 〖Android〗查找Android中的/system/lib中增加的lib文件是否在apk文件中
#!/bin/bash - #=============================================================================== # # F ...
- 14-spring学习-变量操作
表达式所有操作都是可以以变量形式出现的. 观察变量的定义: package com.Spring.ELDemo; import org.springframework.expression.Evalu ...
- Java 的抽象特性:抽象类与接口深度解析
要点: 抽象类 接口 抽象类与接口的差别 一. 抽象 对于面向对象编程来说,抽象是它的四大特征之中的一个. 在Java中,能够通过两种形式来体现OOP的抽象:接口和抽象类. 接口和抽象类为我们提供了一 ...
- 点滴记录——在Ubuntu 14.04中使SublimeText 3支持中文输入法
在Ubuntu 14.04中安装了SublimeText 3之后发现既然不支持输入中文,于是在网上搜罗一下,发现非常多人遇到了相同的问题,可是解决的方法大该就仅仅有一个.以下依据自身的安装及解决的方法 ...
- idea 更换编辑器背景图片
插件名称是:BackgroundImage, 安装后效果图
- EMQ ---客户端上线自动订阅主题
通过修改配置文件即可实现. emq v2.3.11,软件架构做了调整,把功能集成在了emq_modules模块,/data/loaded_plugins默认会加载emq_modules. 我们只需要改 ...