zstuoj 4245 KI的斐波那契
KI的斐波那契
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 550 Solved: 208
Description
KI十分喜欢美丽而优雅的斐波那契数列,最近他新认识了一种斐波那契字符串,定义如下
f (0) = b, f (1) = a,
f (2) = f (1) + f (0) = ab,
f (3) = f (2) + f (1) = aba,
f (4) = f (3) + f (2) = abaab,
......
KI想知道 f (n)
中的第 m 位是什么,你可以帮他解决这个问题吗?
Input
第一行有一个整数 T ,表示测试组数。
接下来的每个测试组包含两个数 n, m
。
数据范围: T≤ 1000, 0
≤ n ≤ 90, 1≤ m
≤ 1e18
Output
对于每个测试组,输出’a’或者’b’
Sample Input
54 15 310 2222 23366 2333333333333
Sample Output
aaaba
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <stack>
#include <algorithm>
typedef long long ll;
using namespace std;
const int N=100;
ll f[N];
void fi()
{
f[0]=1;
f[1]=1;
for(int i=2; i<=90; i++)
{
f[i]=f[i-1]+f[i-2];
}
}
int f1(ll n,ll m)
{
if(n==1) return 1;
if(n==2) return m==1?1:0;
if(m>f[n-1]) return f1(n-2,m-f[n-1]);
else return f1(n-1,m); }
int main()
{
int t;
scanf("%d",&t);
fi();
while(t--)
{
ll n,m;
scanf("%lld %lld",&n,&m);
f1(n,m)?puts("a"):puts("b");
}
return 0;
}
zstuoj 4245 KI的斐波那契的更多相关文章
- KI的斐波那契_DFS
Description KI十分喜欢美丽而优雅的斐波那契数列,最近他新认识了一种斐波那契字符串,定义如下 f (0) = b, f (1) = a, f (2) = f (1) + f (0) = a ...
- [BSGS算法]纯水斐波那契数列
学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只 ...
- 【严蔚敏】【数据结构题集(C语言版)】1.17 求k阶斐波那契序列的第m项值的函数算法
已知k阶斐波那契序列的定义为 f(0)=0,f(1)=0,...f(k-2)=0,f(k-1)=1; f(n)=f(n-1)+f(n-2)+...+f(n-k),n=k,k+1,... 试编写求k阶斐 ...
- CF717A Festival Organization(第一类斯特林数,斐波那契数列)
题目大意:求 $\sum\limits_{n=l}^{r}\dbinom{f_n}{k}\bmod 10^9+7$.其中 $f_n$ 是长度为 $n$ 的 $01$ 序列中,没有连续两个或超过两个 $ ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- Ural 1225. Flags 斐波那契DP
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
随机推荐
- Digging(DP)
ZOJ Problem Set - 3689 Digging Time Limit: 2 Seconds Memory Limit: 65536 KB When it comes to th ...
- git使用(1)----推送代码到远程
git使用(1) 首先要明白git上有三个区域 1.工作区 2.暂存区 3.历史记录区 步骤: 1.git init 2.配置环境(如果配置一次了以后就不用再继续配置) git config - ...
- 调试android chrome web page简明备忘
必备工具 adb tools.android chrome 先开启手机调试模式 adb forward tcp:9919 localabstract:chrome_devtools_remote 成功 ...
- arguments.length
本文地址:http://www.cnblogs.com/veinyin/p/7607083.html arguments.length是实参的个数,与形参个数无关.
- 【总结】前端必须收藏的CSS3动效库!!!
现在的网站和App的设计中越来越重视用户体验,而优秀的动效则能使你的应用更具交互性,从而吸引更多用户的使用. 如果你对CSS3中定义动效还不熟练,或希望采用更加简单直接的方式在你的应用中引入动效的话, ...
- [006] largest_common_substring
[Description] Given two different strings, find the largest successive common substring. e.g. str1[] ...
- ahttp
# -*- coding: utf-8 -*- # @Time : 2018/8/20 14:35 # @Author : cxa # @File : chttp.py # @Software: Py ...
- centos7安装完成后的一些配置
1.打开终端 输入 sudo yum -y update 先更新软件包 2.这是输入语言 应用程序->系统工具->设置->区域和语言->+ ->汉语(中国)-> ...
- CGI、FastCGI和php-fpm的概念和区别
CGI是HTTP Server和一个独立的进程之间的协议,把HTTP Request的Header设置成进程的环境变量,HTTP Request的正文设置成进程的标准输入,而进程的标准输出就是HTTP ...
- v4l
v4l 2011-11-08 11:01:54| 分类: 默认分类|举报|字号 订阅 第一个部分介绍一些v4l的基本概念和基本方法,利用系统API完成一系列函数以方便后续应用程序的开发和使用 ...