【BZOJ 3659】 3659: Which Dreamed It (Matrix-Tree&BEST theorem )
3659: Which Dreamed It
Time Limit: 20 Sec Memory Limit: 1024 MB
Submit: 134 Solved: 41Description
有n个房间,每个房间有若干把钥匙能够打开特定房间的门。你会做这么件事情:最初你在房间1。每当你到达一个房间,你可以选择该房间的一把钥匙,前往该钥匙对应的房间,并将该钥匙丢到垃圾桶中。你希望:最终回到房间1,且垃圾桶中有所有的钥匙。求方案数。两组方案不同,当且仅当使用钥匙的顺序不同。注意,每把钥匙都是不同的。Input
有多组数据。对于每组数据第一行输入一个数n,表示房间数。接下来n行依次描述每个房间:首先一个数s,表示这个房间的钥匙数目,接下来s个数,分别描述每把钥匙能够打开的房间的门。输入以n-0结尾。Output
对于每组数据,输出方案数,为了方便你的输出,请将答案对1000003取模。Sample Input
1
0
2
1 1
1 2
0Sample Output
1
0HINT
在第一组样例中,没有钥匙,则方案数为1。
在第二组样例中,你不可能使用第二个房间的钥匙,所以方案数为0。
房间数小于等于100,钥匙数小于等于200000。
数据组数也不是特别多。
Source
【分析】
这种题叫做结论题。
%CA爷
然后这里有两个结论
1.有向图以i为根的树形图的数目=基尔霍夫矩阵去掉第i行和第i列的主子式的行列式的值(即Matrix-Tree定理不仅适用于求无向图生成树数目,也适用于求有向图树形图数目)
2.以某个点为起点的欧拉回路数=该点为根的树形图数*(所有点出度-1)的乘积(本名BEST theorem)
关于BEST theorem可以提供一个wiki上的讲解:about BEST theorem
最后还有乘上起点的出度?【怎么没说。。
【我觉得我Mod那里应该有问题,但是我没有被卡哦。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
const int Mod=;
#define Maxn 1000010 int a[][],m[],fac[Maxn]; int qpow(int x,int b)
{
x%=Mod;
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%Mod;
x=1LL*x*x%Mod;
b>>=;
}
return ans;
} int gauss(int n)
{
if (n==) return ;
int ans=;
for(int i=;i<=n;i++)
{
int t=i;
for(int j=i+;j<=n;j++) if(a[j][i]>a[t][i]) t=j;
if(a[t][i]==) return ;
if(t!=i)
{
ans=-ans;
for(int j=;j<=n;j++) swap(a[t][j],a[i][j]);
}
int ny=qpow(a[i][i],Mod-);
for(int j=i+;j<=n;j++)
{
int nw=1LL*ny*a[j][i]%Mod;
for(int k=i;k<=n;k++) a[j][k]-=1LL*a[i][k]*nw%Mod,a[j][k]=(a[j][k]%Mod+Mod)%Mod;
}
}
for(int i=;i<=n;i++) ans=1LL*ans*a[i][i]%Mod;
ans=(ans%Mod+Mod)%Mod;
return ans;
} int main()
{
int n;
fac[]=;for(int i=;i<=Mod;i++) fac[i]=1LL*fac[i-]*i%Mod;
while()
{
scanf("%d",&n);
if(!n) break;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
scanf("%d",&m[i]);
for(int j=;j<=m[i];j++)
{
int x;
scanf("%d",&x);
if(i!=x) a[i][x]--,a[i][i]++;
}
}
if(n==&&!m[]) {printf("1\n");continue;}
int ans=;
for(int i=;i<=n;i++) ans=1LL*ans*fac[m[i]-]%Mod;
ans=1LL*ans*m[]%Mod;
ans=1LL*ans*gauss(n-)%Mod;
printf("%d\n",ans);
}
return ;
}
2017-04-16 20:11:07
【BZOJ 3659】 3659: Which Dreamed It (Matrix-Tree&BEST theorem )的更多相关文章
- 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 404 Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...
- 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 【BZOJ 1095】 1095: [ZJOI2007]Hide 捉迷藏 (括号序列+线段树)
1095: [ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏 ...
- 【bzoj 2716】[Violet 3]天使玩偶 (CDQ+树状数组)
题目描述 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 Ayu 生活的 ...
- 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)
题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...
- 【UOJ207】共价大爷游长沙(Link-Cut Tree,随机化)
[UOJ207]共价大爷游长沙(Link-Cut Tree,随机化) 题面 UOJ 题解 这题太神了 \(\%\%\%myy\) 看到动态的维护边很容易的想到了\(LCT\) 然后能否堵住一条路 我们 ...
- 【POJ 2482】 Stars in Your Window(线段树+离散化+扫描线)
[POJ 2482] Stars in Your Window(线段树+离散化+扫描线) Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
- 【BZOJ 1597】 [Usaco2008 Mar]土地购买 (斜率优化)
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3601 Solved: 1322 Descrip ...
随机推荐
- Centos7环境下消息队列之ActiveMQ实战
Activemq介绍 对于消息的传递有两种类型: 一种是点对点的,即一个生产者和一个消费者一一对应: 另一种是发布/订阅模式,即一个生产者产生消息并进行发送后,可以由多个消费者进行接收. JMS定义了 ...
- Redis-1-Redis的安装
Redis 什么是Redis? redis是一个开源的.使用C语言编写的.支持网络交互的.可基于内存也可持久化的Key-Value数据库. 安装Redis: windows下如何安装? 官方网址:ht ...
- python学习笔记(十二)之函数
牛刀小试: 定义一个无参函数 >>> def myFirstFunc(): ... print("Hello python") ... print("h ...
- xp,win7,win10系统安装GHO镜像下载
淘宝买的纯净版系统镜像 不含任何垃圾软件 极致纯净 链接:http://pan.baidu.com/s/1eR12db0 密码:opjm 链接:http://pan.baidu.com/s/1mhEN ...
- Fiddler 抓包工具总结(转)
阅读目录 1. Fiddler 抓包简介 1). 字段说明 2). Statistics 请求的性能数据分析 3). Inspectors 查看数据内容 4). AutoResponder 允许拦截制 ...
- iOS中UITabelView
1.概述 继承自UIScrollView,只能显示一列数据,只能纵向滑动.堪称UIKit里面最复杂的一个控件了,使用起来不算难,但是要用好并不容易.当使用的时候我们必须要考虑到后台数据的设计,tabl ...
- 【nginx+tomcat集群】Nginx1.12.2+Tomcat7集群+负载均衡+Session共享
今天想着将项目优化一下,就想的实现集群分布,在本机测试:利用nginx+tomcat实现 通过上一篇博客(http://www.cnblogs.com/qlqwjy/p/8535235.html),N ...
- Codeforces Round #502
Codeforces Round #502 C. The Phone Number 题目描述:求一个\(n\)排列,满足\(LIS+LDS\)最小 solution 枚举\(LIS\),可证明\(LD ...
- Mac——mac安装软件
命令行: perl: curl -L http://xrl.us/installperlosx | bash 参考资料: https://blog.csdn.net/yuxin6866/article ...
- Linux阵列 RAID详解 (转)
原文链接:http://molinux.blog.51cto.com/2536040/516008 一. RAID详解 二. mdadm工具介绍 三. 创建一个RAID的基本过程 四. ...