204. Little Jumper

time limit per test: 0.5 sec.
memory limit per test: 65536 KB
input: standard
output: standard

Little frog Georgie likes to jump. Recently he have discovered the new playground that seems the perfect place to jump.

Recently the new jumping exercise has become very popular. Two vertical walls are placed on the playground, each of which has a hole.

The lower sides of the holes in the walls are on heights b1 and b2 respectively, and upper sides on heights t1 and t2. Walls are parallel and placed on distance l from each other.

The jumper starts at the distance ds from the first wall. It jumps through the first hole and lands between the walls. After that from that point he jumps through the second hole. The goal is to land exactly at the distance df from the second wall.

Let us describe the jump. The jumper starts from the specified point and starts moving in some chosen direction with the speed not exceeding some maximal speed v, determined by the strength of the jumper. The gravity of g forces him down, thus he moves along the parabolic trajectory.

The jumper can choose different starting speeds and different directions for his first and second jump.

Of course, The jumper must not attempt to pass through the wall, although it is allowed to touch it passing through the hole, this does not change the trajectory of the jump. The jumper is not allowed to pass through both holes in a single jump.

Find out, what must be the maximal starting speed of the jumper so that he could fulfil the excersise.

Input

Input file contains one or more lines, each of which contains eight real numbers, separated by spaces and/or line feeds. They designate b1, t1, b2, t2, l, ds, df and g. All numbers are in range from 10-2 to 103, t1≥ b1 + 10-2, t2≥ b2 + 10-2.

Output

For each line of the input file output the smallest possible maximal speed the jumper must have to fulfil the exercise. If it is impossible to fulfil it, output -1. Your answer must be accurate up to 10-4.

Sample test(s)

Input

0.3 1.0 0.5 0.9 1.7 1.2 2.3 9.8
0.6 0.8 0.6 0.8 2.4 0.3 1.5 0.7

Output

5.2883
1.3127

附送中文题意

题意

有只小青蛙要从两个竖起来的间隔为\(l\)的,各自有两个洞,分别以上部离地高度和下部离地高度描述,\(t_1,\ b_1,\ t_2,\ b_2\)的隔板跳过去。要求跳两次,一次从离第一块隔板\(d_s\)距离处以初速度\(v_1\),方向自定,跳进隔板间,落脚点自定,一次以速度\(v_2\),方向自定,从另外一边跳出来落在离第二块隔板\(d_t\)处,要你求最小的速度,即\(\min(\ max(\ v_1,\ \ v_2\ )\ )\)。

参见此图:

![](https://images0.cnblogs.com/blog/654122/201408/131731471862166.jpg)

考虑一次跳跃,从\((0,\ 0)\)跳到\((x_2,\ 0)\),以高度\(y_1\)越过在\(x_1\)处的障碍,求最小速度\(v\)。

设x方向上的速度为\(v_x\),y为\(v_y\),那么高y和远x成方程。设时间$t=\frac{x}{v_x} \(,那么\)y = \frac{v_y + v_y - t \times g}{2}\times t=t\times v_y - \frac{t^2}{2}\times g=\frac{x\times v_y}{v_x} - \frac{x^2\times g}{2\times v_x^2}\(;
用\)v_x, v_y$表示得:

\[2y\times v_x^2 - 2x\times v_y\times v_x + x^2g=0
\]

对于两组点:\((x_1,y_1)\),\((x_2,y_2)\),可以通过解方程得出\((v_x,v_y)\),那么初始速度即为\(\sqrt{v_x^2+v_y^2}\)。

\[v_y^2=\frac{(2y_1\times v_x^2+x_1^2g)^2}{(2x_1\times v_x)^2}
\]

\[v_x^2=\frac{x_1^2x_2g-x_1x_2^2g}{2y_2x_1-2y_1x_2}
\]

然后没了。。

notice

  1. 如果出射角为45度为最优,但是考虑到“洞”的限制,发现,如果45度可以通过,则取45度作为出射角,否则如果45度的抛物线交于洞顶上方时,取通过上方端点的点在抛物线上,否则取下方点,见下图(引用自Vergissmeinnicht):

  2. 其他没啥了。。。1A的。。

#include <cstdio>
#include <cstring>
#include <cmath>
#define max(x, y) ((x) < (y) ? (y) : (x))
typedef double DB;
const DB eps = 1e-12; DB ds, df, t1, t2, b1, b2, dist, g;
#define sqr(x) ((x) * (x))
DB calc(DB s, DB y2, DB y1, DB x1, DB x2) {
DB jud = x1 - x1 * x1 / x2;
if(y1 <= jud && jud <= y2) return x2 * g;
if(jud < y1) {
y2 = 0.0;
} else {
y1 = y2;
y2 = 0.0;
}
DB vx2 = (sqr(x1) * x2 * g - x1 * sqr(x2) * g) / 2 / (x1 * y2 - x2 * y1);
DB vy2 = (sqr(2 * y1 * vx2 + sqr(x1) * g) / vx2 / sqr(x1) / 4);
//printf("%lf %lf\n", vx2, vy2);
return vx2 + vy2;
} DB calc(DB pos) {
return max(calc(0.0, t1, b1, ds, pos + ds), calc(0.0, t2, b2, dist - pos, dist - pos + df));
} int main() {
#ifndef ONLINE_JUDGE
freopen("204.in", "r", stdin);
freopen("204.out", "w", stdout);
#endif
while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &b1, &t1, &b2, &t2, &dist, &ds, &df, &g) != EOF) {
DB l = 0, r = dist;
while(eps < r - l) {
DB m1, m2;
m1 = l + (r - l) / 3;
m2 = l + (r - l) / 3 * 2;
DB a1, a2;
a1 = calc(m1);
a2 = calc(m2);
if(a1 < a2) r = m2;
else l = m1;
}
DB ans = sqrt(calc((l + r) / 2));
printf("%.4lf\n", ans);
}
return 0;
}

SGU 204. Little Jumper的更多相关文章

  1. PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱?

    PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱? PIC10F单片机芯片解密型号: PIC10F200解密 | PIC10F202解密 | PIC10 ...

  2. PHP build notes - WARNING: This bison version is not supported for regeneration of the Zend/PHP parsers (found: 3.0, min: 204, excluded: 3.0).

     WARNING: This bison version is not supported for regeneration of the Zend/PHP parsers (found: 3.0, ...

  3. ShareSDK 集成 Google+ 登录 400. Error:redirect_uri_mismatch 和 Error Domain=ShareSDKErrorDomain Code=204

    最近在集成ShareSDK中 Google+ 登录授权时候 出现了如下几个问题 1.    400.  Error:redirect_uri_mismatch 出现这种情况, redirectUri应 ...

  4. SGU 495. Kids and Prizes

    水概率....SGU里难得的水题.... 495. Kids and Prizes Time limit per test: 0.5 second(s)Memory limit: 262144 kil ...

  5. ACM: SGU 101 Domino- 欧拉回路-并查集

    sgu 101 - Domino Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u Desc ...

  6. 【SGU】495. Kids and Prizes

    http://acm.sgu.ru/problem.php?contest=0&problem=495 题意:N个箱子M个人,初始N个箱子都有一个礼物,M个人依次等概率取一个箱子,如果有礼物则 ...

  7. SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...

  8. SGU 422 Fast Typing(概率DP)

    题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...

  9. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

随机推荐

  1. python基础----面向对象的程序设计(五个阶段、对小白的忠告、关于OOP常用术语)、类、对象

    一.面向对象的软件开发有如下几个阶段                                              1.面向对象分析(object oriented analysis ,O ...

  2. C++堆和栈详解(转)

    一.预备知识—程序的内存分配    一个由C/C++编译的程序占用的内存分为以下几个部分    1.栈区(stack)—   由编译器自动分配释放   ,存放函数的参数值,局部变量的值等.其    操 ...

  3. 驱动之NandFlash的介绍与应用20170209

    本文主要介绍的是NAND FLASH的介绍与应用,直接看个人笔记即可:

  4. 链接错误 multiply defined (by misc_1.o and misc.o).

    http://www.stmcu.org/module/forum/thread-286128-1-1.html *** Using Compiler 'V5.06 (build 20)', fold ...

  5. Azure 上SQL Database(PaaS)Time Zone时区问题处理

    在Azure上面的PaaS时间都是以UTC时间为准(云的世界里基本上都是以UTC时间为标准的),所以以前在本地SQL Server上面常用的GetDate()方法会碰到问题,在中国获取的时间会被当前时 ...

  6. [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...

  7. [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...

  8. Java集合框架(list,Queue)

    List和Queue都继承自Collection接口 list常规用法 List判断两个对象相等的标准:equals方法返回true class A2 { public boolean equals( ...

  9. Jugs(回溯法)

    ZOJ Problem Set - 1005 Jugs Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge In ...

  10. max-device-width和max-width的区别

    比如用媒体查询响应输出@media (max-width: 767px),用谷歌浏览器手机测试插件显示并无变化,其实关键在于max-device-width和max-width,以下摘抄↓ max-d ...