NYOJ--69
数的长度
原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=69
分析:先看看求n!的朴素算法,用大整数乘法来实现。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int wei[];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(wei,,sizeof(wei));
int cnt=;
scanf("%d",&n);
wei[cnt]=;
for(int i=;i<=n;i++)
{
int carry=;
for(int j=;j<=cnt;j++)
{
int t=carry;
carry=(wei[j]*i+t)/;
wei[j]=(wei[j]*i+t)%;
}
if(carry)
{
wei[++cnt]=carry;
wei[cnt]=carry%;
carry/=;
}
while(carry>=)
{
wei[++cnt]=carry%;
carry/=;
}
if(carry)
wei[++cnt]=carry;
}
printf("%d\n",cnt+);
}
return ;
}
分析:设n!=10^M,则log10(n!)=M=log10(1)+log10(2)+……,然后向上取整即可!
也可以直接套公式!n!的位数 = log10(2*PI*n)/2+n*log10(n/e)。或者 = log10(sqrt(2*PI*n)) + n*log10(n/e)。
stirling公式证明: http://episte.math.ntu.edu.tw/articles/mm/mm_17_2_05/index.html
附:PI=acos(-1.0)=2acos(0.0).
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int fac[];
void wei(int n)
{
double M=;
fac[]=;
fac[]=;
for(int i=;i<=n;i++)
{
M+=log10(i);
if(M-(int)M!=)
fac[i]=(int)M+;
else
fac[i]=(int)M;
}
}
int main()
{
wei();
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",fac[n]);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define pi acos(-1.0)
using namespace std;
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double ans=(log10(*pi*n))/+n*log10(n/exp(1.0));
printf("%d\n",(int)ans+);
}
return ;
}
NYOJ--69的更多相关文章
- nyoj 69 数的长度
数的长度 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出 ...
- NYOJ 69 数的长度(数学)
数的长度 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出 ...
- NYOJ 1272 表达式求值 第九届省赛 (字符串处理)
title: 表达式求值 第九届省赛 nyoj 1272 tags: [栈,数据结构] 题目链接 描述 假设表达式定义为: 1. 一个十进制的正整数 X 是一个表达式. 2. 如果 X 和 Y 是 表 ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解价格
NXP恩智浦P87LPC760/61/62/64/67/68/69/78/79芯片解密单片机破解 NXP LPC700系列单片机解密型号: P87LPC759.P87LPC760.P87LPC761. ...
- NYOJ 333
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...
- 69个经典Spring面试题和答案
Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring 框架目标是简化Java企业级应用开发,并通过PO ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- java.lang.NullPointerException org.apache.struts2.impl.StrutsActionProxy.getErrorMessage(StrutsActionProxy.java:69)
采用SSH框架时出现了 java.lang.NullPointerException org.apache.struts2.impl.StrutsActionProxy.getErrorMessage ...
随机推荐
- JavaScript里的循环方法之forEach,for-in,for-of
JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型.它的解释器被称为JavaScript引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在HTML(标 ...
- flask_sqlalchemy介绍
快速入门 Flask-SQLAlchemy 使用起来非常有趣,对于基本应用十分容易使用,并且对于大型项目易于扩展.有关完整的指南,请参阅 SQLAlchemy 的 API 文档. 一个最小应用 常见情 ...
- kubernetes nfs-client-provisioner外部存储控制器
介绍: nfs-client-provisione是一个专门用于NFS外部目录挂载的控制器,当多个副本创建时,他们的命名方式如下: pv provisioned as ${namespace}-${p ...
- Qt应用程序重启
重启应用程序是一种常见的操作,在Qt中实现非常简单,需要用到QProcess类一个静态方法: // program, 要启动的程序名称 // arguments, 启动参数 bool startDet ...
- Hibernate查询的六种方式
Hibernate查询的六种方式 分别是HQL查询,对象化查询Criteria方法,动态查询DetachedCriteria,例子查询,sql查询,命名查询. 如果单纯的使用hibernate ...
- 王者荣耀交流协会final发布WBS+PSP
WBS: PSP: 时间为估计,大致精确. 类型 personal software process stages 预估时间 实际花费时间 planning 计划 4h 4h estimate 4h ...
- 第9次Scrum会议(10/21)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华小组照片 二.开会信息 时间:2017/10/21 17:20~17:45,总计25min.地点:东北师范 ...
- python apply()函数
python apply函数的具体的含义: apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数.args是一个包含将要提供 ...
- python 中如何计算时间差...
Q:如何方便的计算两个时间的差,如两个时间相差几天,几小时等 A:使用datetime模块可以很方便的解决这个问题,举例如下: >>> import datetime>> ...
- HDU 1257 最少拦截系统(最长递减子序列的条数)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 题解: #include<iostream> #include<cstdio ...